Spaces:
Running
Running
File size: 10,871 Bytes
b3fa29f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
"""
taken and adapted from https://github.com/as-ideas/DeepForcedAligner
"""
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.multiprocessing
import torch.nn as nn
from scipy.sparse import coo_matrix
from scipy.sparse.csgraph import dijkstra
from torch.nn import CTCLoss
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.utils.rnn import pad_packed_sequence
from Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend
class BatchNormConv(nn.Module):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int):
super().__init__()
self.conv = nn.Conv1d(
in_channels, out_channels, kernel_size,
stride=1, padding=kernel_size // 2, bias=False)
self.bnorm = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = x.transpose(1, 2)
x = self.conv(x)
x = self.relu(x)
x = self.bnorm(x)
x = x.transpose(1, 2)
return x
class Aligner(torch.nn.Module):
def __init__(self,
n_mels=80,
num_symbols=145,
lstm_dim=512,
conv_dim=512):
super().__init__()
self.convs = nn.ModuleList([
BatchNormConv(n_mels, conv_dim, 3),
nn.Dropout(p=0.5),
BatchNormConv(conv_dim, conv_dim, 3),
nn.Dropout(p=0.5),
BatchNormConv(conv_dim, conv_dim, 3),
nn.Dropout(p=0.5),
BatchNormConv(conv_dim, conv_dim, 3),
nn.Dropout(p=0.5),
BatchNormConv(conv_dim, conv_dim, 3),
nn.Dropout(p=0.5),
])
self.rnn = torch.nn.LSTM(conv_dim, lstm_dim, batch_first=True, bidirectional=True)
self.proj = torch.nn.Linear(2 * lstm_dim, num_symbols)
self.tf = ArticulatoryCombinedTextFrontend(language="en")
self.ctc_loss = CTCLoss(blank=144, zero_infinity=True)
self.vector_to_id = dict()
for phone in self.tf.phone_to_vector:
self.vector_to_id[tuple(self.tf.phone_to_vector[phone])] = self.tf.phone_to_id[phone]
def forward(self, x, lens=None):
for conv in self.convs:
x = conv(x)
if lens is not None:
x = pack_padded_sequence(x, lens.cpu(), batch_first=True, enforce_sorted=False)
x, _ = self.rnn(x)
if lens is not None:
x, _ = pad_packed_sequence(x, batch_first=True)
x = self.proj(x)
return x
@torch.no_grad()
def label_speech(self, speech):
# theoretically possible, but doesn't work well at all. Would probably require a beamsearch
probabilities_of_phones_over_frames = self(speech.unsqueeze(0)).squeeze()[:, :73]
smoothed_phone_probs_over_frames = list()
for index, _ in enumerate(probabilities_of_phones_over_frames):
access_safe_prev_index = max(0, index - 1)
access_safe_next_index = min(index + 1, len(probabilities_of_phones_over_frames) - 1)
smoothed_probs = (probabilities_of_phones_over_frames[access_safe_prev_index] +
probabilities_of_phones_over_frames[access_safe_next_index] +
probabilities_of_phones_over_frames[index]) / 3
smoothed_phone_probs_over_frames.append(smoothed_probs.unsqueeze(0))
print(torch.cat(smoothed_phone_probs_over_frames))
_, phone_ids_over_frames = torch.max(torch.cat(smoothed_phone_probs_over_frames), dim=1)
phone_ids = torch.unique_consecutive(phone_ids_over_frames)
phones = list()
for id_of_phone in phone_ids:
phones.append(self.tf.id_to_phone[int(id_of_phone)])
return "".join(phones)
@torch.inference_mode()
def inference(self, mel, tokens, save_img_for_debug=None, train=False, pathfinding="MAS", return_ctc=False):
if not train:
tokens_indexed = list() # first we need to convert the articulatory vectors to IDs, so we can apply dijkstra or viterbi
for vector in tokens:
tokens_indexed.append(self.vector_to_id[tuple(vector.cpu().detach().numpy().tolist())])
tokens = np.asarray(tokens_indexed)
else:
tokens = tokens.cpu().detach().numpy()
pred = self(mel.unsqueeze(0))
if return_ctc:
ctc_loss = self.ctc_loss(pred.transpose(0, 1).log_softmax(2), torch.LongTensor(tokens), torch.LongTensor([len(pred[0])]),
torch.LongTensor([len(tokens)])).item()
pred = pred.squeeze().cpu().detach().numpy()
pred_max = pred[:, tokens]
path_probs = 1. - pred_max
adj_matrix = to_adj_matrix(path_probs)
if pathfinding == "MAS":
alignment_matrix = binarize_alignment(pred_max)
if save_img_for_debug is not None:
phones = list()
for index in tokens:
for phone in self.tf.phone_to_id:
if self.tf.phone_to_id[phone] == index:
phones.append(phone)
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 4))
ax.imshow(alignment_matrix, interpolation='nearest', aspect='auto', origin="lower", cmap='cividis')
ax.set_ylabel("Mel-Frames")
ax.set_xticks(range(len(pred_max[0])))
ax.set_xticklabels(labels=phones)
ax.set_title("MAS Path")
plt.tight_layout()
fig.savefig(save_img_for_debug)
fig.clf()
plt.close()
if return_ctc:
return alignment_matrix, ctc_loss
return alignment_matrix
elif pathfinding == "dijkstra":
dist_matrix, predecessors, *_ = dijkstra(csgraph=adj_matrix,
directed=True,
indices=0,
return_predecessors=True)
path = []
pr_index = predecessors[-1]
while pr_index != 0:
path.append(pr_index)
pr_index = predecessors[pr_index]
path.reverse()
# append first and last node
path = [0] + path + [dist_matrix.size - 1]
cols = path_probs.shape[1]
mel_text = {}
# collect indices (mel, text) along the path
for node_index in path:
i, j = from_node_index(node_index, cols)
mel_text[i] = j
path_plot = np.zeros_like(pred_max)
for i in mel_text:
path_plot[i][mel_text[i]] = 1.0
if save_img_for_debug is not None:
phones = list()
for index in tokens:
for phone in self.tf.phone_to_id:
if self.tf.phone_to_id[phone] == index:
phones.append(phone)
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(10, 9))
ax[0].imshow(pred_max, interpolation='nearest', aspect='auto', origin="lower")
ax[1].imshow(path_plot, interpolation='nearest', aspect='auto', origin="lower", cmap='cividis')
ax[0].set_ylabel("Mel-Frames")
ax[1].set_ylabel("Mel-Frames")
ax[0].set_xticks(range(len(pred_max[0])))
ax[0].set_xticklabels(labels=phones)
ax[1].set_xticks(range(len(pred_max[0])))
ax[1].set_xticklabels(labels=phones)
ax[0].set_title("Path Probabilities")
ax[1].set_title("Dijkstra Path")
plt.tight_layout()
fig.savefig(save_img_for_debug)
fig.clf()
plt.close()
if return_ctc:
return path_plot, ctc_loss
return path_plot
def binarize_alignment(alignment_prob):
"""
# Implementation by:
# https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/FastPitch/fastpitch/alignment.py
# https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/FastPitch/fastpitch/attn_loss_function.py
Binarizes alignment with MAS.
"""
# assumes mel x text
opt = np.zeros_like(alignment_prob)
alignment_prob = alignment_prob + (np.abs(alignment_prob).max() + 1.0) # make all numbers positive and add an offset to avoid log of 0 later
alignment_prob * alignment_prob * (1.0 / alignment_prob.max()) # normalize to (0, 1]
attn_map = np.log(alignment_prob)
attn_map[0, 1:] = -np.inf
log_p = np.zeros_like(attn_map)
log_p[0, :] = attn_map[0, :]
prev_ind = np.zeros_like(attn_map, dtype=np.int64)
for i in range(1, attn_map.shape[0]):
for j in range(attn_map.shape[1]): # for each text dim
prev_log = log_p[i - 1, j]
prev_j = j
if j - 1 >= 0 and log_p[i - 1, j - 1] >= log_p[i - 1, j]:
prev_log = log_p[i - 1, j - 1]
prev_j = j - 1
log_p[i, j] = attn_map[i, j] + prev_log
prev_ind[i, j] = prev_j
# now backtrack
curr_text_idx = attn_map.shape[1] - 1
for i in range(attn_map.shape[0] - 1, -1, -1):
opt[i, curr_text_idx] = 1
curr_text_idx = prev_ind[i, curr_text_idx]
opt[0, curr_text_idx] = 1
return opt
def to_node_index(i, j, cols):
return cols * i + j
def from_node_index(node_index, cols):
return node_index // cols, node_index % cols
def to_adj_matrix(mat):
rows = mat.shape[0]
cols = mat.shape[1]
row_ind = []
col_ind = []
data = []
for i in range(rows):
for j in range(cols):
node = to_node_index(i, j, cols)
if j < cols - 1:
right_node = to_node_index(i, j + 1, cols)
weight_right = mat[i, j + 1]
row_ind.append(node)
col_ind.append(right_node)
data.append(weight_right)
if i < rows - 1 and j < cols:
bottom_node = to_node_index(i + 1, j, cols)
weight_bottom = mat[i + 1, j]
row_ind.append(node)
col_ind.append(bottom_node)
data.append(weight_bottom)
if i < rows - 1 and j < cols - 1:
bottom_right_node = to_node_index(i + 1, j + 1, cols)
weight_bottom_right = mat[i + 1, j + 1]
row_ind.append(node)
col_ind.append(bottom_right_node)
data.append(weight_bottom_right)
adj_mat = coo_matrix((data, (row_ind, col_ind)), shape=(rows * cols, rows * cols))
return adj_mat.tocsr()
|