File size: 6,032 Bytes
b3fa29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""
Taken from ESPNet
"""

import math

import torch


class PositionalEncoding(torch.nn.Module):
    """
    Positional encoding.

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.
        reverse (bool): Whether to reverse the input position.
    """

    def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
        """
        Construct an PositionalEncoding object.
        """
        super(PositionalEncoding, self).__init__()
        self.d_model = d_model
        self.reverse = reverse
        self.xscale = math.sqrt(self.d_model)
        self.dropout = torch.nn.Dropout(p=dropout_rate)
        self.pe = None
        self.extend_pe(torch.tensor(0.0, device=d_model.device).expand(1, max_len))

    def extend_pe(self, x):
        """
        Reset the positional encodings.
        """
        if self.pe is not None:
            if self.pe.size(1) >= x.size(1):
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return
        pe = torch.zeros(x.size(1), self.d_model)
        if self.reverse:
            position = torch.arange(x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
        else:
            position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.pe = pe.to(device=x.device, dtype=x.dtype)

    def forward(self, x):
        """
        Add positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).

        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).
        """
        self.extend_pe(x)
        x = x * self.xscale + self.pe[:, : x.size(1)]
        return self.dropout(x)


class RelPositionalEncoding(torch.nn.Module):
    """
    Relative positional encoding module (new implementation).
    Details can be found in https://github.com/espnet/espnet/pull/2816.
    See : Appendix B in https://arxiv.org/abs/1901.02860
    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.
    """

    def __init__(self, d_model, dropout_rate, max_len=5000):
        """
        Construct an PositionalEncoding object.
        """
        super(RelPositionalEncoding, self).__init__()
        self.d_model = d_model
        self.xscale = math.sqrt(self.d_model)
        self.dropout = torch.nn.Dropout(p=dropout_rate)
        self.pe = None
        self.extend_pe(torch.tensor(0.0).expand(1, max_len))

    def extend_pe(self, x):
        """Reset the positional encodings."""
        if self.pe is not None:
            # self.pe contains both positive and negative parts
            # the length of self.pe is 2 * input_len - 1
            if self.pe.size(1) >= x.size(1) * 2 - 1:
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return
        # Suppose `i` means to the position of query vecotr and `j` means the
        # position of key vector. We use position relative positions when keys
        # are to the left (i>j) and negative relative positions otherwise (i<j).
        pe_positive = torch.zeros(x.size(1), self.d_model, device=x.device)
        pe_negative = torch.zeros(x.size(1), self.d_model, device=x.device)
        position = torch.arange(0, x.size(1), dtype=torch.float32, device=x.device).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32, device=x.device) * -(math.log(10000.0) / self.d_model))
        pe_positive[:, 0::2] = torch.sin(position * div_term)
        pe_positive[:, 1::2] = torch.cos(position * div_term)
        pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
        pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)

        # Reserve the order of positive indices and concat both positive and
        # negative indices. This is used to support the shifting trick
        # as in https://arxiv.org/abs/1901.02860
        pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
        pe_negative = pe_negative[1:].unsqueeze(0)
        pe = torch.cat([pe_positive, pe_negative], dim=1)
        self.pe = pe.to(dtype=x.dtype)

    def forward(self, x):
        """
        Add positional encoding.
        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).
        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).
        """
        self.extend_pe(x)
        x = x * self.xscale
        pos_emb = self.pe[:, self.pe.size(1) // 2 - x.size(1) + 1: self.pe.size(1) // 2 + x.size(1), ]
        return self.dropout(x), self.dropout(pos_emb)


class ScaledPositionalEncoding(PositionalEncoding):
    """
    Scaled positional encoding module.

    See Sec. 3.2  https://arxiv.org/abs/1809.08895

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.

    """

    def __init__(self, d_model, dropout_rate, max_len=5000):
        super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len)
        self.alpha = torch.nn.Parameter(torch.tensor(1.0))

    def reset_parameters(self):
        self.alpha.data = torch.tensor(1.0)

    def forward(self, x):
        """
        Add positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).

        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).

        """
        self.extend_pe(x)
        x = x + self.alpha * self.pe[:, : x.size(1)]
        return self.dropout(x)