File size: 5,493 Bytes
cea6632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright 2020 Johns Hopkins University (Shinji Watanabe)
#                Northwestern Polytechnical University (Pengcheng Guo)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)
# Adapted by Florian Lux 2021


import torch
from torch import nn

from Layers.LayerNorm import LayerNorm


class EncoderLayer(nn.Module):
    """
    Encoder layer module.

    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
            can be used as the argument.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
            can be used as the argument.
        feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance.
            `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
            can be used as the argument.
        conv_module (torch.nn.Module): Convolution module instance.
            `ConvlutionModule` instance can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied. i.e. x -> x + att(x)

    """

    def __init__(self, size, self_attn, feed_forward, feed_forward_macaron, conv_module, dropout_rate, normalize_before=True, concat_after=False, ):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.feed_forward_macaron = feed_forward_macaron
        self.conv_module = conv_module
        self.norm_ff = LayerNorm(size)  # for the FNN module
        self.norm_mha = LayerNorm(size)  # for the MHA module
        if feed_forward_macaron is not None:
            self.norm_ff_macaron = LayerNorm(size)
            self.ff_scale = 0.5
        else:
            self.ff_scale = 1.0
        if self.conv_module is not None:
            self.norm_conv = LayerNorm(size)  # for the CNN module
            self.norm_final = LayerNorm(size)  # for the final output of the block
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        if self.concat_after:
            self.concat_linear = nn.Linear(size + size, size)

    def forward(self, x_input, mask, cache=None):
        """
        Compute encoded features.

        Args:
            x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb.
                - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
                - w/o pos emb: Tensor (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, time).
            cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).

        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time).

        """
        if isinstance(x_input, tuple):
            x, pos_emb = x_input[0], x_input[1]
        else:
            x, pos_emb = x_input, None

        # whether to use macaron style
        if self.feed_forward_macaron is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_ff_macaron(x)
            x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
            if not self.normalize_before:
                x = self.norm_ff_macaron(x)

        # multi-headed self-attention module
        residual = x
        if self.normalize_before:
            x = self.norm_mha(x)

        if cache is None:
            x_q = x
        else:
            assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
            x_q = x[:, -1:, :]
            residual = residual[:, -1:, :]
            mask = None if mask is None else mask[:, -1:, :]

        if pos_emb is not None:
            x_att = self.self_attn(x_q, x, x, pos_emb, mask)
        else:
            x_att = self.self_attn(x_q, x, x, mask)

        if self.concat_after:
            x_concat = torch.cat((x, x_att), dim=-1)
            x = residual + self.concat_linear(x_concat)
        else:
            x = residual + self.dropout(x_att)
        if not self.normalize_before:
            x = self.norm_mha(x)

        # convolution module
        if self.conv_module is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_conv(x)
            x = residual + self.dropout(self.conv_module(x))
            if not self.normalize_before:
                x = self.norm_conv(x)

        # feed forward module
        residual = x
        if self.normalize_before:
            x = self.norm_ff(x)
        x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm_ff(x)

        if self.conv_module is not None:
            x = self.norm_final(x)

        if cache is not None:
            x = torch.cat([cache, x], dim=1)

        if pos_emb is not None:
            return (x, pos_emb), mask

        return x, mask