File size: 2,860 Bytes
1acf699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72cb20
1acf699
 
47a9ca5
1acf699
 
 
 
47a9ca5
 
 
 
 
1acf699
 
 
 
 
 
 
 
 
 
 
 
865ea06
1acf699
 
 
865ea06
47a9ca5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import streamlit as st
import wget, os, io, ast
import matplotlib.pyplot as plt
from PIL import Image
from genQC.pipeline.diffusion_pipeline import DiffusionPipeline
from genQC.inference.infer_srv import generate_srv_tensors, convert_tensors_to_srvs
from genQC.util import infer_torch_device

#--------------------------------
# download model into storage

save_destination = "saves/"

url_config  = "https://github.com/FlorianFuerrutter/genQC/blob/044f7da6ebe907bd796d3db293024db223cc1852/saves/qc_unet_config_SRV_3to8_qubit/config.yaml"
url_weights = "https://github.com/FlorianFuerrutter/genQC/blob/044f7da6ebe907bd796d3db293024db223cc1852/saves/qc_unet_config_SRV_3to8_qubit/model.pt"

def download(url, dst_dir):
    if not os.path.exists(dst_dir): os.mkdir(dst_dir)
    filename = os.path.join(dst_dir, os.path.basename(url))
    if not os.path.exists(filename): filename = wget.download(url + "?raw=true", out=filename)
    return filename

config_file  = download(url_config, save_destination)
weigths_file = download(url_weights, save_destination)

#--------------------------------
# setup

try:
    pipeline
except:
    pipeline = DiffusionPipeline.from_config_file(save_destination, infer_torch_device())  
    pipeline.scheduler.set_timesteps(20) 

is_gpu_busy = False
def get_correct_qcs_image(srv, num_of_qubits, max_gates, g):
    global is_gpu_busy
    
    out_tensor           = generate_srv_tensors(pipeline, f"Generate SRV: {srv}", samples=6, system_size=num_of_qubits, num_of_qubits=num_of_qubits, max_gates=max_gates, g=g) 
    qc_list, _, svr_list = convert_tensors_to_srvs(out_tensor, pipeline.gate_pool)

    fig, axs = plt.subplots(3, 2, figsize=(7,10), constrained_layout=True, dpi=120)
    for qc,is_svr,ax in zip(qc_list, svr_list, axs.flatten()): 
        qc.draw("mpl", plot_barriers=False, ax=ax)
        ax.set_title(f"{'Correct' if is_svr==srv else 'NOT correct'}, is SRV = {is_svr}")

    # buf = io.BytesIO()
    # fig.savefig(buf)
    # buf.seek(0)
    # return Image.open(buf)
    return fig

#--------------------------------
# run

st.title("genQC · Generative Quantum Circuits")
st.write("""
Generating quantum circuits with diffusion models. Official demo of [[paper-arxiv]](https://arxiv.org/abs/2311.02041) [[code-repo]](https://github.com/FlorianFuerrutter/genQC).
""")

col1, col2 = st.columns(2)

srv           = col1.text_input('SRV', "[1,1,1,2,2]")
num_of_qubits = col1.radio('Number of qubits (should match SRV)', [3,4,5,6,7,8], index=2)
max_gates     = col1.select_slider('Max gates', options=[4,8,12,16,20,24,28], value=16)
g             = col1.slider('Guidance scale', min_value=0.0, max_value=15.0, value=7.5)

if col1.button('Generate circuits'):    
    fig = get_correct_qcs_image(ast.literal_eval(srv), num_of_qubits, max_gates, g)
    # col2.image(image, use_column_width=True)
    col2.pyplot(fig)