Spaces:
Runtime error
Runtime error
File size: 15,897 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Tuple
import pytest
import torch
from xformers.components import (
InputProjection,
InputProjectionConfig,
MultiHeadDispatch,
)
# Automatically test all the registered attentions
from xformers.components.attention import (
_DENSITY_THRESHOLD,
ATTENTION_REGISTRY,
build_attention,
)
DEVICES = (
[torch.device("cpu")] if not torch.cuda.is_available() else [torch.device("cuda")]
)
BATCH = 2
SEQ = 128 if torch.cuda.is_available() else 36
MODEL = 128 if torch.cuda.is_available() else 16
GLOBAL_ATTENTION_RATIO = (
_DENSITY_THRESHOLD * 0.9
) # Make sure that we test the sparse implementation, no matter the threshold
assert ATTENTION_REGISTRY.keys(), "Attention layers should have been registered"
_non_order_invariant_attentions = ["visual", "pooling"]
def _get_multihead(
attention_name,
attn_dropout,
res_dropout,
causal,
heads,
device,
skip_output_projection=False,
use_separate_proj_weights=True,
):
test_config = {
"name": attention_name,
"dropout": attn_dropout,
"causal": causal,
"seq_len": SEQ,
"window_size": SEQ // 8 + 1, # local attention
"attention_query_mask": torch.rand((SEQ, 1)) < GLOBAL_ATTENTION_RATIO,
"dim_model": MODEL,
"num_heads": heads,
"dim_head": MODEL / heads,
"num_rules": 2, # Compositional Attention
"r": 0.5, # random attention, ratio of tokens that the attention can attend to
}
if skip_output_projection:
def noop(x):
return x
test_config["out_proj"] = noop
# Add some blocksparse layout to test the corresponding attention
block_size = 16
test_config["layout"] = torch.eye(
SEQ // block_size, SEQ // block_size, dtype=torch.long
)
test_config["block_size"] = block_size
attention = build_attention(test_config)
# build a multi head dispatch to test this attention mechanism
multi_head = MultiHeadDispatch(
seq_len=SEQ,
dim_model=MODEL,
residual_dropout=res_dropout,
num_heads=heads,
attention=attention,
use_separate_proj_weight=use_separate_proj_weights,
).to(device)
return multi_head
@pytest.mark.parametrize("attn_dropout", [0.0, 0.3])
@pytest.mark.parametrize("residual_dropout", [0.0, 0.1])
@pytest.mark.parametrize("causal", [True, False])
@pytest.mark.parametrize("heads", [1, 4])
@pytest.mark.parametrize(
"attention_name", ATTENTION_REGISTRY.keys() - _non_order_invariant_attentions
)
@pytest.mark.parametrize("device", DEVICES)
def test_order_invariance(
attention_name: str,
heads: int,
attn_dropout: float,
residual_dropout: float,
causal: bool,
device: torch.device,
):
if (
torch.version.hip
and device == torch.device("cuda")
and attention_name == "local"
):
# Backend calls into Sputnik library which isn't built on ROCm
device = torch.device("cpu")
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
multi_head = _get_multihead(
attention_name,
attn_dropout,
residual_dropout,
causal,
heads,
device,
use_separate_proj_weights=False,
)
if (
int(math.sqrt(SEQ)) ** 2 != SEQ
and multi_head.attention.requires_squared_context
):
pytest.skip(f"{attention_name} requires squared sequence lengths")
# Check that we can pass a smaller sequence
seqs = (
[SEQ, SEQ // 2]
if not multi_head.attention.requires_same_k_q_dimensions
else [SEQ]
)
for seq in seqs:
# Check that the attention is invariant to a permutation of K, V
inputs = torch.rand(BATCH, seq, MODEL, device=device)
shuffle = torch.randperm(inputs.shape[1])
inputs_shuffled = inputs[:, shuffle, :].clone()
results = multi_head(inputs, inputs, inputs)
results_shuffled = multi_head(inputs, inputs_shuffled, inputs_shuffled)
torch.allclose(results, results_shuffled)
# Check that the attention is equivariant to a permutation of Q,
# meaning that the result is permuted in the same way
results_shuffled = multi_head(inputs_shuffled, inputs, inputs)
torch.allclose(results[:, shuffle, :], results_shuffled)
# Check that dropout actually drops some values
if attn_dropout > 0:
att_1 = multi_head(inputs, inputs_shuffled, inputs)
att_2 = multi_head(inputs, inputs_shuffled, inputs)
assert (att_1 != att_2).any()
# Test AMP, if available
if device.type == "cuda":
with torch.cuda.amp.autocast(enabled=True):
_ = multi_head(inputs, inputs_shuffled, inputs)
@pytest.mark.parametrize("heads", [1, 4])
@pytest.mark.parametrize("attention_name", ["scaled_dot_product"])
@pytest.mark.parametrize("device", DEVICES)
def test_kqv_ordering(
attention_name: str,
heads: int,
device: torch.device,
):
multi_head = _get_multihead(attention_name, 0.0, 0.0, False, heads, device)
# Check kqv are not flipped
# this will not catch all issues, but would catch a V being misplaced
# make k and q complimentary, so that QKt is all zero and attention is uniform
q = torch.cat(
(
torch.rand((1, MODEL // 2), device=device),
torch.zeros((1, MODEL // 2), device=device),
),
dim=1,
).expand((BATCH, SEQ, MODEL))
k = torch.cat(
(
torch.zeros((1, MODEL // 2), device=device),
torch.rand((1, MODEL // 2), device=device),
),
dim=1,
).expand((BATCH, SEQ, MODEL))
v = torch.rand(BATCH, SEQ, MODEL, device=device)
# Normal call
res = multi_head(query=q, key=k, value=v)
for i in range(BATCH):
assert torch.allclose(res[i, :, :], res[i, 0, :].unsqueeze(-2))
assert not torch.allclose(res[0, :, :], res[1, :, :])
# Flip qkv, and check that we invert the above check properly
res_false = multi_head(query=v, key=k, value=q)
assert torch.allclose(res_false[0, :, :], res_false[1, :, :])
@pytest.mark.parametrize("heads", [1, 4])
@pytest.mark.parametrize("attention_name", ["scaled_dot_product"])
@pytest.mark.parametrize("device", DEVICES)
def test_different_seqlen(
attention_name: str,
heads: int,
device: torch.device,
):
multi_head = _get_multihead(attention_name, 0.0, 0.0, False, heads, device)
# Check kqv are not flipped
# this will not catch all issues, but would catch a V being misplaced
# make k and q complimentary, so that QKt is all zero and attention is uniform
q = torch.cat(
(
torch.rand((1, MODEL // 2), device=device),
torch.zeros((1, MODEL // 2), device=device),
),
dim=1,
).expand((BATCH, SEQ, MODEL))
k = torch.cat(
(
torch.zeros((1, MODEL // 2), device=device),
torch.rand((1, MODEL // 2), device=device),
),
dim=1,
).expand((BATCH, SEQ, MODEL))
v = torch.rand(BATCH, SEQ, MODEL, device=device)
# Normal call
res = multi_head(query=q, key=k, value=v)
# Changing sequence length by dividing by two to simulate differing sequence length
q2 = torch.cat(
(
torch.rand((1, MODEL // 2), device=device),
torch.zeros((1, MODEL // 2), device=device),
),
dim=1,
).expand((BATCH, SEQ // 2, MODEL))
k2 = torch.cat(
(
torch.zeros((1, MODEL // 2), device=device),
torch.rand((1, MODEL // 2), device=device),
),
dim=1,
).expand((BATCH, SEQ // 2, MODEL))
v2 = torch.rand(BATCH, SEQ // 2, MODEL, device=device)
res2 = multi_head(query=q2, key=k2, value=v2)
assert res.shape != res2.shape
@pytest.mark.parametrize("proj_bias", [False, True])
@pytest.mark.parametrize("same_sizes", [False, True])
@pytest.mark.parametrize("same_settings", [False, True])
def test_inproj(proj_bias: bool, same_sizes: bool, same_settings: bool):
test_config = {
"name": "scaled_dot_product",
"dropout": 0.1,
"causal": False,
"seq_len": SEQ,
"window_size": SEQ // 8 + 1,
"num_heads": 1,
"dim_head": MODEL,
}
attention = build_attention(test_config)
# Construct the initial projection, test different options
in_params = InputProjectionConfig(MODEL, MODEL, proj_bias)
if same_settings:
in_proj = InputProjection(in_params, None, None)
out_features = MODEL
else:
out_features = MODEL if same_sizes else MODEL // 2
in_params_flip = InputProjectionConfig(MODEL, out_features, proj_bias)
in_proj = InputProjection(
in_params_flip, # Q proj
in_params_flip, # K proj
in_params, # V proj
)
# build a multi head dispatch to test this attention mechanism
multi_head = MultiHeadDispatch(
seq_len=SEQ,
dim_model=MODEL,
residual_dropout=0.1,
num_heads=1,
attention=attention,
in_proj_container=in_proj,
dim_key=out_features,
dim_value=MODEL,
)
# Check kqv are not flipped
# this will not catch all issues, but would catch a V being misplaced
# make k and q complimentary, so that QKt is all zero and attention is uniform
q = torch.cat(
(
torch.rand((1, MODEL // 2)),
torch.zeros((1, MODEL // 2)),
),
dim=1,
).expand((BATCH, SEQ, MODEL))
k = torch.cat(
(
torch.zeros((1, MODEL // 2)),
torch.rand((1, MODEL // 2)),
),
dim=1,
).expand((BATCH, SEQ, MODEL))
v = torch.rand(BATCH, SEQ, MODEL)
# just check that a FW does not assert out
_ = multi_head(query=q, key=k, value=v)
@pytest.mark.parametrize("heads", [1, 4])
@pytest.mark.parametrize("attention_name", ATTENTION_REGISTRY.keys())
@pytest.mark.parametrize("device", DEVICES)
def test_different_kq_dimensions(
attention_name: str,
heads: int,
device: torch.device,
):
multi_head = _get_multihead(attention_name, 0.0, 0.0, False, heads, device)
if multi_head.attention.requires_same_k_q_dimensions:
# pyre-fixme[29]: The library function `pytest.skip` is not supported by Pyre.
pytest.skip(f"{attention_name} does not support different k, q dimensions yet.")
seq_q = SEQ // 2
q = torch.rand((BATCH, seq_q, MODEL), device=device)
k = torch.rand((BATCH, SEQ, MODEL), device=device)
v = torch.rand((BATCH, SEQ, MODEL), device=device)
res = multi_head(query=q, key=k, value=v)
assert res.shape == torch.Size([BATCH, seq_q, MODEL])
@pytest.mark.parametrize("heads", [1, 4])
@pytest.mark.parametrize("attention_name", ATTENTION_REGISTRY.keys())
@pytest.mark.parametrize("device", DEVICES)
@pytest.mark.parametrize(
"batch_sizes",
[
(1, BATCH, BATCH),
(BATCH, 1, BATCH),
(BATCH, BATCH, 1),
(1, 1, BATCH),
(BATCH, 1, 1),
(1, BATCH, 1),
],
)
def test_broadcast_batch_dimension(
attention_name: str,
heads: int,
device: torch.device,
batch_sizes: Tuple[int, int, int],
):
Q_BATCH, K_BATCH, V_BATCH = batch_sizes
multi_head = _get_multihead(attention_name, 0.0, 0.0, False, heads, device)
if (
int(math.sqrt(SEQ)) ** 2 != SEQ
and multi_head.attention.requires_squared_context
):
pytest.skip(f"{attention_name} requires squared sequence lengths")
if multi_head.attention.requires_same_k_q_dimensions:
# pyre-fixme[29]: The library function `pytest.skip` is not supported by Pyre.
pytest.skip(f"{attention_name} does not support different k, q dimensions yet.")
q = torch.rand((Q_BATCH, SEQ, MODEL), device=device)
k = torch.rand((K_BATCH, SEQ, MODEL), device=device)
v = torch.rand((V_BATCH, SEQ, MODEL), device=device)
res = multi_head(query=q, key=k, value=v)
assert res.shape == torch.Size([BATCH, SEQ, MODEL])
@pytest.mark.parametrize("heads", [1, 4])
@pytest.mark.parametrize("attention_name", ["scaled_dot_product", "favor"])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires a CUDA gpu")
def test_causal(
attention_name: str,
heads: int,
):
"""
Make sure that the causal flag is respected.
The input data is orthogonal by design if causal is respected, but if the attention looks ahead this will fail
"""
torch.random.manual_seed(42)
device = torch.device("cuda")
multi_head = _get_multihead(
attention_name,
0.0,
0.0,
causal=True,
heads=heads,
device=device,
skip_output_projection=True,
)
k = (
torch.tril(torch.ones((SEQ, SEQ), device=device), diagonal=0)
.unsqueeze(0)
.expand(1, -1, -1)
)
q = (
torch.triu(torch.ones((SEQ, SEQ), device=device), diagonal=0)
.unsqueeze(0)
.expand(1, -1, -1)
)
v = (
torch.arange(SEQ, device=device)
.float()
.unsqueeze(0)
.unsqueeze(-1)
.expand(1, -1, SEQ)
)
# Make sure that we don´t project, to keep the embeddings orthogonal
multi_head.attention.requires_input_projection = False
res = multi_head(query=q, key=k, value=v).squeeze(0)
# Consolidate along the embedding, if causal was respected the amplitude should be sorted already
res_sum = torch.sum(res, dim=1).cpu()
assert torch.allclose(torch.sort(res_sum)[1], torch.arange(SEQ)) or torch.allclose(
torch.sort(res_sum, descending=True)[1], torch.arange(SEQ)
), res_sum
@pytest.mark.parametrize("attn_dropout", [0.0, 0.1])
@pytest.mark.parametrize("heads", [2])
@pytest.mark.parametrize("attention_name", ATTENTION_REGISTRY.keys())
@pytest.mark.skipif(torch.cuda.is_available(), reason="CUDA gpu not supported yet")
def test_torch_script_ability(
attention_name: str,
heads: int,
attn_dropout: float,
):
if attention_name in {"favor", "global", "local", "random"}:
# pyre-fixme[29]: The library function `pytest.skip` is not supported by Pyre.
pytest.skip(f"{attention_name} does not support scripting yet.")
device = torch.device("cpu")
multi_head = _get_multihead(attention_name, attn_dropout, 0.0, False, heads, device)
if (
int(math.sqrt(SEQ)) ** 2 != SEQ
and multi_head.attention.requires_squared_context
):
pytest.skip(f"{attention_name} requires squared sequence lengths")
# input for tracing the function
q = torch.rand((BATCH, SEQ, MODEL), device=device)
k = torch.rand((BATCH, SEQ, MODEL), device=device)
v = torch.rand((BATCH, SEQ, MODEL), device=device)
# to make sure dropout behaves deterministically
torch.random.manual_seed(42)
# tracing the attention module
traced_multi_head = torch.jit.trace(multi_head, (q, k, v))
# create new random inputs for testing the eager model and traced model
q = torch.rand((BATCH, SEQ, MODEL), device=device)
k = torch.rand((BATCH, SEQ, MODEL), device=device)
v = torch.rand((BATCH, SEQ, MODEL), device=device)
# to make sure dropout behaves deterministically need to set the seed again
torch.random.manual_seed(42)
res = multi_head(query=q, key=k, value=v)
# to make sure dropout behaves deterministically need to set the seed again
torch.random.manual_seed(42)
res_traced = traced_multi_head(query=q, key=k, value=v)
assert torch.allclose(res, res_traced)
# TODO: way more unit tests..
|