File size: 9,607 Bytes
3670892
dfdff51
 
 
1467791
 
d29de7e
 
1467791
 
cf52a35
 
 
1467791
dfdff51
 
 
 
 
 
 
1467791
 
 
 
 
dfdff51
1467791
 
 
 
 
 
 
 
 
 
dfdff51
 
62b2e19
1467791
dfdff51
62b2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfdff51
62b2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467791
 
 
 
62b2e19
 
ea1d17e
62b2e19
dfdff51
 
 
 
 
 
 
 
 
 
62b2e19
dfdff51
62b2e19
 
 
 
 
1467791
62b2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfdff51
 
1467791
 
62b2e19
dfdff51
62b2e19
dfdff51
62b2e19
ea1d17e
dfdff51
f82987b
dfdff51
 
f82987b
dfdff51
 
 
 
cf52a35
 
dfdff51
 
b7255ad
dfdff51
ea1d17e
 
1467791
 
ea1d17e
cf52a35
ea1d17e
b7255ad
dfdff51
b7255ad
 
 
dfdff51
 
 
b7255ad
dfdff51
b7255ad
dfdff51
 
 
b7255ad
dfdff51
 
 
 
 
 
1467791
dfdff51
b7255ad
 
dfdff51
 
 
 
b7255ad
dfdff51
 
 
 
 
1467791
 
 
dfdff51
 
1467791
 
 
dfdff51
 
 
1467791
 
 
dfdff51
 
1467791
 
 
dfdff51
b7255ad
1467791
 
 
 
 
 
 
 
dfdff51
 
1467791
dfdff51
 
 
 
 
b7255ad
dfdff51
 
ea1d17e
dfdff51
 
b7255ad
dfdff51
 
ea1d17e
dfdff51
 
 
 
ea1d17e
dfdff51
 
 
 
 
 
 
1467791
dfdff51
f82987b
62b2e19
 
 
73ad22a
dfdff51
62b2e19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import torch
import gradio as gr
import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline

import spaces

# Constants
MODEL_CONFIG = {
    "G0-Release": "FlameF0X/SnowflakeCore-G0-Release",
    "G0-Release-2": "FlameF0X/SnowflakeCore-G0-Release-2",
    "G0-Release-2.5": "FlameF0X/SnowflakeCore-G0-Release-2.5"
}

MAX_LENGTH = 384
TEMPERATURE_DEFAULT = 0.7
TOP_P_DEFAULT = 0.9
TOP_K_DEFAULT = 40
MAX_NEW_TOKENS_DEFAULT = 256

TEMPERATURE_MIN, TEMPERATURE_MAX = 0.1, 2.0
TOP_P_MIN, TOP_P_MAX = 0.1, 1.0
TOP_K_MIN, TOP_K_MAX = 1, 100
MAX_NEW_TOKENS_MIN, MAX_NEW_TOKENS_MAX = 16, 1024

css = """
.gradio-container { background-color: #1e1e2f !important; color: #e0e0e0 !important; }
.header { background-color: #2b2b3c; padding: 20px; margin-bottom: 20px; border-radius: 10px; text-align: center; }
.header h1 { color: #66ccff; margin-bottom: 10px; }
.snowflake-icon { font-size: 24px; margin-right: 10px; }
.footer { text-align: center; margin-top: 20px; font-size: 0.9em; color: #999; }
.parameter-section { background-color: #2a2a3a; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
.parameter-section h3 { margin-top: 0; color: #66ccff; }
.example-section { background-color: #223344; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
.example-section h3 { margin-top: 0; color: #66ffaa; }
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; }
"""

# Global registry - models will be loaded on-demand within GPU function
model_registry = {}

def load_model_cpu(model_id):
    """Load model on CPU only - no CUDA initialization"""
    print(f"Loading model on CPU: {model_id}")
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    # Load model on CPU only
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.float32,
        device_map=None,  # No device mapping
        low_cpu_mem_usage=True
    )
    
    return model, tokenizer

@spaces.GPU
def generate_text_gpu(prompt, model_version, temperature, top_p, top_k, max_new_tokens):
    """GPU-decorated function for text generation"""
    try:
        # Load model if not already loaded
        if model_version not in model_registry:
            model_id = MODEL_CONFIG[model_version]
            model, tokenizer = load_model_cpu(model_id)
            model_registry[model_version] = (model, tokenizer)
        
        model, tokenizer = model_registry[model_version]
        
        # Move model to GPU only inside this function
        if torch.cuda.is_available():
            model = model.cuda()
            device = "cuda"
        else:
            device = "cpu"
        
        # Create pipeline inside GPU function
        pipeline = TextGenerationPipeline(
            model=model,
            tokenizer=tokenizer,
            return_full_text=False,
            max_length=MAX_LENGTH,
            device=device
        )
        
        outputs = pipeline(
            prompt,
            do_sample=temperature > 0,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            max_new_tokens=max_new_tokens,
            pad_token_id=tokenizer.pad_token_id,
            num_return_sequences=1
        )
        
        response = outputs[0]["generated_text"]
        return response, None
        
    except Exception as e:
        error_msg = f"Error generating response: {str(e)}"
        return error_msg, str(e)

def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_tokens, history=None):
    """Main generation function that calls GPU function"""
    if history is None:
        history = []
    
    # Add user message to history
    history.append({"role": "user", "content": prompt})
    
    try:
        # Call GPU function
        response, error = generate_text_gpu(
            prompt, model_version, temperature, top_p, top_k, max_new_tokens
        )
        
        if error:
            history.append({"role": "assistant", "content": f"[ERROR] {response}", "model": model_version})
        else:
            history.append({"role": "assistant", "content": response, "model": model_version})
        
        # Format history for display
        formatted_history = []
        for entry in history:
            prefix = "👤 User: " if entry["role"] == "user" else f"❄️ [{entry.get('model', 'Model')}]: "
            formatted_history.append(f"{prefix}{entry['content']}")
        
        return response, history, "\n\n".join(formatted_history)
        
    except Exception as e:
        error_msg = f"Error in generation pipeline: {str(e)}"
        history.append({"role": "assistant", "content": f"[ERROR] {error_msg}", "model": model_version})
        return error_msg, history, str(history)

def clear_conversation():
    return "", [], ""

def create_demo():
    with gr.Blocks(css=css) as demo:
        gr.HTML("""
        <div class="header">
            <h1><span class="snowflake-icon">❄️</span> SnowflakeCore Demo Inteface</h1>
            <p>Experience the capabilities of the SnowflakeCore series language models</p>
        </div>
        """)

        with gr.Column():
            with gr.Row(elem_classes="model-select"):
                model_version = gr.Radio(
                    choices=list(MODEL_CONFIG.keys()),
                    value=list(MODEL_CONFIG.keys())[0],
                    label="Select Model Version",
                    info="Choose which SnowflakeCore model to use"
                )

            chat_history_display = gr.Textbox(
                value="",
                label="Conversation History",
                lines=10,
                max_lines=30,
                interactive=False
            )

            history_state = gr.State([])

            with gr.Row():
                with gr.Column(scale=4):
                    prompt = gr.Textbox(
                        placeholder="Type your message here...",
                        label="Your Input",
                        lines=2
                    )
                with gr.Column(scale=1):
                    submit_btn = gr.Button("Send", variant="primary")
                    clear_btn = gr.Button("Clear Conversation")

            response_output = gr.Textbox(
                value="",
                label="Model Response",
                lines=5,
                max_lines=10,
                interactive=False
            )

        with gr.Accordion("Generation Parameters", open=False):
            with gr.Column(elem_classes="parameter-section"):
                with gr.Row():
                    with gr.Column():
                        temperature = gr.Slider(
                            minimum=TEMPERATURE_MIN, maximum=TEMPERATURE_MAX,
                            value=TEMPERATURE_DEFAULT, step=0.05,
                            label="Temperature"
                        )
                        top_p = gr.Slider(
                            minimum=TOP_P_MIN, maximum=TOP_P_MAX,
                            value=TOP_P_DEFAULT, step=0.05,
                            label="Top-p"
                        )
                    with gr.Column():
                        top_k = gr.Slider(
                            minimum=TOP_K_MIN, maximum=TOP_K_MAX,
                            value=TOP_K_DEFAULT, step=1,
                            label="Top-k"
                        )
                        max_new_tokens = gr.Slider(
                            minimum=MAX_NEW_TOKENS_MIN, maximum=MAX_NEW_TOKENS_MAX,
                            value=MAX_NEW_TOKENS_DEFAULT, step=8,
                            label="Maximum New Tokens"
                        )

        examples = [
            "Write a short story about a snowflake that comes to life.",
            "Explain the concept of artificial neural networks to a 10-year-old.",
            "What are some interesting applications of natural language processing?",
            "Write a haiku about programming.",
            "Create a dialogue between two AI researchers discussing the future of language models."
        ]

        with gr.Accordion("Example Prompts", open=True):
            with gr.Column(elem_classes="example-section"):
                gr.Examples(
                    examples=examples,
                    inputs=prompt,
                    label="Click on an example to try it",
                    examples_per_page=5
                )

        gr.HTML(f"""
        <div class="footer">
            <p>Snowflake Models Demo • Created with Gradio • {datetime.datetime.now().year}</p>
        </div>
        """)

        submit_btn.click(
            fn=generate_text,
            inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
            outputs=[response_output, history_state, chat_history_display]
        )
        prompt.submit(
            fn=generate_text,
            inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
            outputs=[response_output, history_state, chat_history_display]
        )
        clear_btn.click(
            fn=clear_conversation,
            inputs=[],
            outputs=[prompt, history_state, chat_history_display]
        )

    return demo

# Initialize demo without loading models (they'll load on-demand)
print("Initializing Snowflake Models Demo...")
demo = create_demo()

if __name__ == "__main__":
    demo.launch()