File size: 13,260 Bytes
3aa1bcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import numpy as np
import json
import uuid
from datetime import datetime, timedelta
import time
from huggingface_hub import HfApi, login
from streamlit_option_menu import option_menu
import requests
import hashlib
import os
# Configure page
st.set_page_config(
page_title="ML Tracker - Free W&B Alternative",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state
if 'authenticated' not in st.session_state:
st.session_state.authenticated = False
if 'user_token' not in st.session_state:
st.session_state.user_token = None
if 'api_key' not in st.session_state:
st.session_state.api_key = None
if 'experiments' not in st.session_state:
st.session_state.experiments = {}
if 'current_experiment' not in st.session_state:
st.session_state.current_experiment = None
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
padding: 1rem;
border-radius: 10px;
margin-bottom: 1rem;
}
.metric-card {
background: #f8f9fa;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #667eea;
margin-bottom: 1rem;
}
.api-key-box {
background: #f1f3f4;
padding: 1rem;
border-radius: 8px;
font-family: monospace;
margin: 1rem 0;
}
.stButton > button {
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
color: white;
border: none;
border-radius: 6px;
padding: 0.5rem 1rem;
font-weight: 500;
}
</style>
""", unsafe_allow_html=True)
def generate_api_key(user_token):
"""Generate a unique API key for the user"""
return hashlib.sha256(f"{user_token}_{datetime.now().isoformat()}".encode()).hexdigest()[:32]
def authenticate_user():
"""Handle HuggingFace authentication"""
st.markdown('<div class="main-header"><h1 style="color: white; margin: 0;">π€ ML Tracker</h1><p style="color: white; margin: 0;">Free W&B Alternative on HuggingFace Spaces</p></div>', unsafe_allow_html=True)
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
st.markdown("### π Connect with HuggingFace")
st.markdown("Enter your HuggingFace token to get started with experiment tracking!")
hf_token = st.text_input(
"HuggingFace Token",
type="password",
placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
help="Get your token from https://huggingface.co/settings/tokens"
)
if st.button("π Connect & Generate API Key", use_container_width=True):
if hf_token:
try:
# Verify token
api = HfApi(token=hf_token)
user_info = api.whoami()
# Store authentication
st.session_state.authenticated = True
st.session_state.user_token = hf_token
st.session_state.api_key = generate_api_key(hf_token)
st.session_state.username = user_info['name']
st.success(f"β
Successfully connected as {user_info['name']}!")
time.sleep(1)
st.rerun()
except Exception as e:
st.error(f"β Authentication failed: {str(e)}")
else:
st.error("Please enter your HuggingFace token")
def show_api_key():
"""Display API key and usage instructions"""
st.markdown("### π Your API Key")
st.markdown(f'<div class="api-key-box"><strong>API Key:</strong> {st.session_state.api_key}</div>', unsafe_allow_html=True)
st.markdown("### π Usage Instructions")
st.code(f"""
# Install the client
pip install requests
# Python usage example
import requests
import json
API_KEY = "{st.session_state.api_key}"
BASE_URL = "https://your-space-url.hf.space"
# Log metrics
def log_metrics(experiment_name, step, metrics):
response = requests.post(
f"{BASE_URL}/api/log",
json={{
"api_key": API_KEY,
"experiment": experiment_name,
"step": step,
"metrics": metrics,
"timestamp": time.time()
}}
)
return response.json()
# Example usage
log_metrics("my_experiment", 1, {{
"loss": 0.5,
"accuracy": 0.85,
"learning_rate": 0.001
}})
""", language="python")
def generate_sample_data():
"""Generate sample experiment data for demonstration"""
experiments = {
"cnn_image_classification": {
"created_at": datetime.now() - timedelta(days=2),
"metrics": [],
"config": {
"model": "ResNet50",
"dataset": "CIFAR-10",
"epochs": 100,
"batch_size": 32,
"learning_rate": 0.001
}
},
"nlp_sentiment_analysis": {
"created_at": datetime.now() - timedelta(days=1),
"metrics": [],
"config": {
"model": "BERT",
"dataset": "IMDB",
"epochs": 50,
"batch_size": 16,
"learning_rate": 0.0001
}
}
}
# Generate sample metrics
for exp_name, exp_data in experiments.items():
metrics = []
for step in range(1, 101):
if exp_name == "cnn_image_classification":
loss = 2.3 * np.exp(-step/20) + 0.1 + np.random.normal(0, 0.05)
accuracy = 1 - 0.9 * np.exp(-step/15) + np.random.normal(0, 0.02)
val_loss = loss + np.random.normal(0, 0.1)
val_accuracy = accuracy - np.random.normal(0.05, 0.02)
metrics.append({
"step": step,
"loss": max(0, loss),
"accuracy": max(0, min(1, accuracy)),
"val_loss": max(0, val_loss),
"val_accuracy": max(0, min(1, val_accuracy)),
"timestamp": (datetime.now() - timedelta(days=2) + timedelta(minutes=step*2)).isoformat()
})
else:
loss = 1.8 * np.exp(-step/25) + 0.2 + np.random.normal(0, 0.03)
f1_score = 1 - 0.7 * np.exp(-step/20) + np.random.normal(0, 0.02)
precision = f1_score + np.random.normal(0, 0.02)
recall = f1_score + np.random.normal(0, 0.02)
metrics.append({
"step": step,
"loss": max(0, loss),
"f1_score": max(0, min(1, f1_score)),
"precision": max(0, min(1, precision)),
"recall": max(0, min(1, recall)),
"timestamp": (datetime.now() - timedelta(days=1) + timedelta(minutes=step*3)).isoformat()
})
exp_data["metrics"] = metrics
return experiments
def create_metric_charts(experiment_data):
"""Create interactive charts for experiment metrics"""
if not experiment_data["metrics"]:
st.warning("No metrics data available for this experiment.")
return
df = pd.DataFrame(experiment_data["metrics"])
# Get all numeric columns (excluding step and timestamp)
numeric_cols = [col for col in df.columns if col not in ['step', 'timestamp'] and pd.api.types.is_numeric_dtype(df[col])]
if not numeric_cols:
st.warning("No numeric metrics found.")
return
# Create subplots
n_metrics = len(numeric_cols)
n_cols = 2
n_rows = (n_metrics + n_cols - 1) // n_cols
fig = make_subplots(
rows=n_rows,
cols=n_cols,
subplot_titles=numeric_cols,
vertical_spacing=0.1,
horizontal_spacing=0.1
)
colors = px.colors.qualitative.Set3
for i, metric in enumerate(numeric_cols):
row = i // n_cols + 1
col = i % n_cols + 1
fig.add_trace(
go.Scatter(
x=df['step'],
y=df[metric],
mode='lines+markers',
name=metric,
line=dict(color=colors[i % len(colors)], width=2),
marker=dict(size=4),
hovertemplate=f"<b>{metric}</b><br>Step: %{{x}}<br>Value: %{{y:.4f}}<extra></extra>"
),
row=row,
col=col
)
fig.update_layout(
height=400 * n_rows,
showlegend=False,
title_text="Experiment Metrics Over Time",
title_x=0.5,
font=dict(size=12)
)
fig.update_xaxes(title_text="Step")
fig.update_yaxes(title_text="Value")
st.plotly_chart(fig, use_container_width=True)
def show_experiment_dashboard():
"""Display the main experiment dashboard"""
st.markdown('<div class="main-header"><h1 style="color: white; margin: 0;">π ML Experiment Dashboard</h1></div>', unsafe_allow_html=True)
# Load sample data if no experiments exist
if not st.session_state.experiments:
st.session_state.experiments = generate_sample_data()
# Sidebar for experiment selection
with st.sidebar:
st.markdown("### π¬ Experiments")
exp_names = list(st.session_state.experiments.keys())
if exp_names:
selected_exp = st.selectbox(
"Select Experiment",
exp_names,
key="exp_selector"
)
st.session_state.current_experiment = selected_exp
else:
st.info("No experiments found. Start logging metrics to see them here!")
return
st.markdown("### π Quick Stats")
if st.session_state.current_experiment:
exp_data = st.session_state.experiments[st.session_state.current_experiment]
st.metric("Total Steps", len(exp_data["metrics"]))
st.metric("Created", exp_data["created_at"].strftime("%Y-%m-%d"))
# Main dashboard content
if st.session_state.current_experiment:
exp_data = st.session_state.experiments[st.session_state.current_experiment]
# Experiment header
col1, col2 = st.columns([3, 1])
with col1:
st.markdown(f"## {st.session_state.current_experiment}")
with col2:
if st.button("π Refresh", use_container_width=True):
st.rerun()
# Configuration section
with st.expander("βοΈ Configuration", expanded=False):
config_df = pd.DataFrame(list(exp_data["config"].items()), columns=["Parameter", "Value"])
st.dataframe(config_df, use_container_width=True)
# Metrics overview
if exp_data["metrics"]:
latest_metrics = exp_data["metrics"][-1]
st.markdown("### π Latest Metrics")
cols = st.columns(len([k for k in latest_metrics.keys() if k not in ['step', 'timestamp']]))
for i, (key, value) in enumerate(latest_metrics.items()):
if key not in ['step', 'timestamp']:
with cols[i]:
st.metric(key.replace('_', ' ').title(), f"{value:.4f}")
# Charts section
st.markdown("### π Metrics Over Time")
create_metric_charts(exp_data)
# Raw data section
with st.expander("π Raw Data", expanded=False):
if exp_data["metrics"]:
df = pd.DataFrame(exp_data["metrics"])
st.dataframe(df, use_container_width=True)
else:
st.info("No metrics data available.")
def main():
"""Main application logic"""
if not st.session_state.authenticated:
authenticate_user()
else:
# Navigation menu
selected = option_menu(
menu_title=None,
options=["Dashboard", "API Key", "Logout"],
icons=["graph-up", "key", "box-arrow-right"],
menu_icon="cast",
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "#fafafa"},
"icon": {"color": "#667eea", "font-size": "18px"},
"nav-link": {"font-size": "16px", "text-align": "center", "margin": "0px", "--hover-color": "#eee"},
"nav-link-selected": {"background-color": "#667eea"},
}
)
if selected == "Dashboard":
show_experiment_dashboard()
elif selected == "API Key":
show_api_key()
elif selected == "Logout":
st.session_state.authenticated = False
st.session_state.user_token = None
st.session_state.api_key = None
st.session_state.experiments = {}
st.rerun()
if __name__ == "__main__":
main() |