File size: 8,650 Bytes
4d16728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220d3b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Models registry for the Auto-Analyst application.
This file serves as the single source of truth for all model information.
"""

# Model providers
PROVIDERS = {
    "openai": "OpenAI",
    "anthropic": "Anthropic",
    "groq": "GROQ",
    "gemini": "Google Gemini"
}

# Cost per 1K tokens for different models
MODEL_COSTS = {
    "openai": {
        "gpt-4.1": {"input": 0.002, "output": 0.008},
        "gpt-4.1-mini": {"input": 0.0004, "output": 0.0016},
        "gpt-4.1-nano": {"input": 0.00010, "output": 0.0004},
        "gpt-4.5-preview": {"input": 0.075, "output": 0.15},
        "gpt-4o": {"input": 0.0025, "output": 0.01},
        "gpt-4o-mini": {"input": 0.00015, "output": 0.0006},  
        "o1": {"input": 0.015, "output": 0.06},  
        "o1-pro": {"input": 0.015, "output": 0.6},
        "o1-mini": {"input": 0.00011, "output": 0.00044}, 
        "o3": {"input": 0.001, "output": 0.04},
        "o3-mini": {"input": 0.00011, "output": 0.00044},
        "gpt-3.5-turbo": {"input": 0.0005, "output": 0.0015},  
    },
    "anthropic": {
        "claude-3-opus-latest": {"input": 0.015, "output": 0.075},  
        "claude-3-7-sonnet-latest": {"input": 0.003, "output": 0.015},   
        "claude-3-5-sonnet-latest": {"input": 0.003, "output": 0.015}, 
        "claude-3-5-haiku-latest": {"input": 0.0008, "output": 0.0004},
    },
    "groq": {
        "deepseek-r1-distill-llama-70b": {"input": 0.00075, "output": 0.00099},
        "llama-3.3-70b-versatile": {"input": 0.00059, "output": 0.00079},
        "llama3-8b-8192": {"input": 0.00005, "output": 0.00008},
        "llama3-70b-8192": {"input": 0.00059, "output": 0.00079},
        "mistral-saba-24b": {"input": 0.00079, "output": 0.00079},
        "gemma2-9b-it": {"input": 0.0002, "output": 0.0002},
        "qwen-qwq-32b": {"input": 0.00029, "output": 0.00039},
        "meta-llama/llama-4-maverick-17b-128e-instruct": {"input": 0.0002, "output": 0.0006},
        "meta-llama/llama-4-scout-17b-16e-instruct": {"input": 0.00011, "output": 0.00034},
        "deepseek-r1-distill-qwen-32b": {"input": 0.00075, "output": 0.00099},
        "llama-3.1-70b-versatile": {"input": 0.00059, "output": 0.00079},
    },
    "gemini": {
        "gemini-2.5-pro-preview-03-25": {"input": 0.00015, "output": 0.001}
    }
}

# Tiers based on cost per 1K tokens
MODEL_TIERS = {
    "tier1": {
        "name": "Basic",
        "credits": 1,
        "models": [
            "llama3-8b-8192",
            "llama-3.1-8b-instant",
            "gemma2-9b-it",
            "meta-llama/llama-4-scout-17b-16e-instruct",
            "llama-3.2-1b-preview",
            "llama-3.2-3b-preview",
            "llama-3.2-11b-text-preview",
            "llama-3.2-11b-vision-preview",
            "llama3-groq-8b-8192-tool-use-preview"
        ]
    },
    "tier2": {
        "name": "Standard",
        "credits": 3,
        "models": [
            "gpt-4.1-nano",
            "gpt-4o-mini",
            "o1-mini",
            "o3-mini",
            "qwen-qwq-32b",
            "meta-llama/llama-4-maverick-17b-128e-instruct"
        ]
    },
    "tier3": {
        "name": "Premium",
        "credits": 5,
        "models": [
            "gpt-4.1",
            "gpt-4.1-mini",
            "gpt-4.5-preview",
            "gpt-4o",
            "o1",
            "o1-pro",
            "o3",
            "gpt-3.5-turbo",
            "claude-3-opus-latest",
            "claude-3-7-sonnet-latest",
            "claude-3-5-sonnet-latest",
            "claude-3-5-haiku-latest",
            "deepseek-r1-distill-llama-70b",
            "llama-3.3-70b-versatile",
            "llama3-70b-8192",
            "mistral-saba-24b",
            "deepseek-r1-distill-qwen-32b",
            "llama-3.2-90b-text-preview",
            "llama-3.2-90b-vision-preview",
            "llama-3.3-70b-specdec",
            "llama2-70b-4096",
            "llama-3.1-70b-versatile",
            "llama-3.1-405b-reasoning",
            "llama3-groq-70b-8192-tool-use-preview",
            "gemini-2.5-pro-preview-03-25"
        ]
    }
}


# Model metadata (display name, context window, etc.)
MODEL_METADATA = {
    # OpenAI
    "gpt-4.1": {"display_name": "GPT-4.1", "context_window": 128000},
    "gpt-4.1-mini": {"display_name": "GPT-4.1 Mini", "context_window": 128000},
    "gpt-4.1-nano": {"display_name": "GPT-4.1 Nano", "context_window": 128000},
    "gpt-4o": {"display_name": "GPT-4o", "context_window": 128000},
    "gpt-4.5-preview": {"display_name": "GPT-4.5 Preview", "context_window": 128000},
    "gpt-4o-mini": {"display_name": "GPT-4o Mini", "context_window": 128000},
    "gpt-3.5-turbo": {"display_name": "GPT-3.5 Turbo", "context_window": 16385},
    "o1": {"display_name": "o1", "context_window": 128000},
    "o1-pro": {"display_name": "o1 Pro", "context_window": 128000},
    "o1-mini": {"display_name": "o1 Mini", "context_window": 128000},
    "o3": {"display_name": "o3", "context_window": 128000},
    "o3-mini": {"display_name": "o3 Mini", "context_window": 128000},
    # Anthropic
    "claude-3-opus-latest": {"display_name": "Claude 3 Opus", "context_window": 200000},
    "claude-3-7-sonnet-latest": {"display_name": "Claude 3.7 Sonnet", "context_window": 200000},
    "claude-3-5-sonnet-latest": {"display_name": "Claude 3.5 Sonnet", "context_window": 200000},
    "claude-3-5-haiku-latest": {"display_name": "Claude 3.5 Haiku", "context_window": 200000},
    
    # GROQ
    "deepseek-r1-distill-llama-70b": {"display_name": "DeepSeek R1 Distill Llama 70b", "context_window": 32768},
    "llama-3.3-70b-versatile": {"display_name": "Llama 3.3 70b", "context_window": 8192},
    "llama3-8b-8192": {"display_name": "Llama 3 8b", "context_window": 8192},
    "llama3-70b-8192": {"display_name": "Llama 3 70b", "context_window": 8192},
    "mistral-saba-24b": {"display_name": "Mistral Saba 24b", "context_window": 32768},
    "gemma2-9b-it": {"display_name": "Gemma 2 9b", "context_window": 8192},
    "qwen-qwq-32b": {"display_name": "Qwen QWQ 32b | Alibaba", "context_window": 32768},
    "meta-llama/llama-4-maverick-17b-128e-instruct": {"display_name": "Llama 4 Maverick 17b", "context_window": 128000},
    "meta-llama/llama-4-scout-17b-16e-instruct": {"display_name": "Llama 4 Scout 17b", "context_window": 16000},
    "llama-3.1-70b-versatile": {"display_name": "Llama 3.1 70b Versatile", "context_window": 8192},
    
    # Gemini
    "gemini-2.5-pro-preview-03-25": {"display_name": "Gemini 2.5 Pro", "context_window": 1000000},
}

# Helper functions

def get_provider_for_model(model_name):
    """Determine the provider based on model name"""
    if not model_name:
        return "Unknown"
        
    model_name = model_name.lower()
    return next((provider for provider, models in MODEL_COSTS.items() 
                if any(model_name in model for model in models)), "Unknown")

def get_model_tier(model_name):
    """Get the tier of a model"""
    for tier_id, tier_info in MODEL_TIERS.items():
        if model_name in tier_info["models"]:
            return tier_id
    return "tier1"  # Default to tier1 if not found

def calculate_cost(model_name, input_tokens, output_tokens):
    """Calculate the cost for using the model based on tokens"""
    if not model_name:
        return 0
        
    # Convert tokens to thousands
    input_tokens_in_thousands = input_tokens / 1000
    output_tokens_in_thousands = output_tokens / 1000
    
    # Get model provider
    model_provider = get_provider_for_model(model_name)
    
    # Handle case where model is not found
    if model_provider == "Unknown" or model_name not in MODEL_COSTS.get(model_provider, {}):
        return 0
        
    return (input_tokens_in_thousands * MODEL_COSTS[model_provider][model_name]["input"] + 
            output_tokens_in_thousands * MODEL_COSTS[model_provider][model_name]["output"])

def get_credit_cost(model_name):
    """Get the credit cost for a model"""
    tier_id = get_model_tier(model_name)
    return MODEL_TIERS[tier_id]["credits"]

def get_display_name(model_name):
    """Get the display name for a model"""
    return MODEL_METADATA.get(model_name, {}).get("display_name", model_name)

def get_context_window(model_name):
    """Get the context window size for a model"""
    return MODEL_METADATA.get(model_name, {}).get("context_window", 4096)

def get_all_models_for_provider(provider):
    """Get all models for a specific provider"""
    if provider not in MODEL_COSTS:
        return []
    return list(MODEL_COSTS[provider].keys())

def get_models_by_tier(tier_id):
    """Get all models for a specific tier"""
    return MODEL_TIERS.get(tier_id, {}).get("models", [])