Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 38,641 Bytes
d32c69c d7a1094 d32c69c d7a1094 d32c69c d7a1094 d32c69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 |
import json
import logging
import os
from collections import defaultdict
from datetime import datetime, timedelta
from fastapi import APIRouter, Depends, HTTPException, Query, Request, WebSocket
from fastapi.security import APIKeyHeader
from pydantic import BaseModel
from sqlalchemy import case, desc, func
from sqlalchemy.orm import Session
from src.db.init_db import get_db, get_session
from src.db.schemas.models import ModelUsage
from src.managers.chat_manager import ChatManager
from typing import Any, Dict, List, Optional
from src.utils.logger import Logger
from src.utils.model_registry import MODEL_TIERS, get_model_tier as get_model_tier_from_registry
# Initialize logger with console logging disabled
logger = Logger("analytics_routes", see_time=True, console_log=False)
# Initialize router
router = APIRouter(prefix="/analytics", tags=["analytics"])
# Disable logging
if os.getenv("ENVIRONMENT") == "production":
logger.disable_logging()
# Initialize chat manager
chat_manager = ChatManager(db_url=os.getenv("DATABASE_URL"))
# API Key security
ADMIN_API_KEY = os.getenv("ADMIN_API_KEY", "default-admin-key-change-me")
api_key_header = APIKeyHeader(name="X-Admin-API-Key", auto_error=False)
# Dependency to check admin API key
async def verify_admin_api_key(
api_key: str = Depends(api_key_header),
request: Request = None
):
# Check header first
if api_key and api_key == ADMIN_API_KEY:
logger.log_message("Admin API key successfully verified via header", logging.INFO)
return True
# If API key wasn't in header or didn't match, check query parameters
if request:
api_key_query = request.query_params.get("admin_api_key")
if api_key_query and api_key_query == ADMIN_API_KEY:
logger.log_message("Admin API key successfully verified via query parameter", logging.INFO)
return True
# If we got here, the API key is invalid
logger.log_message("Invalid or missing admin API key attempt", level=logging.WARNING)
raise HTTPException(
status_code=403,
detail="Invalid or missing admin API key"
)
# Active WebSocket connections for real-time updates
active_dashboard_connections = set()
active_user_connections = set()
# Helper function to determine model tier
def get_model_tier(model_name):
"""Determine which tier a model belongs to based on its name"""
return get_model_tier_from_registry(model_name)
# Helper function to parse period parameter
def get_date_range(period: str):
today = datetime.utcnow()
if period == '7d':
start_date = today - timedelta(days=7)
elif period == '30d':
start_date = today - timedelta(days=30)
elif period == '90d':
start_date = today - timedelta(days=90)
else:
start_date = today - timedelta(days=30) # Default to 30 days
return start_date, today
# Dashboard endpoint - combines summary data for the main dashboard
@router.get("/dashboard")
async def get_dashboard_data(
period: str = "30d",
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"Dashboard data requested for period: {period}", logging.INFO)
start_date, end_date = get_date_range(period)
# Get total stats
total_stats = db.query(
func.sum(ModelUsage.total_tokens).label("total_tokens"),
func.sum(ModelUsage.cost).label("total_cost"),
func.count().label("total_requests"),
func.count(func.distinct(ModelUsage.user_id)).label("total_users")
).filter(ModelUsage.timestamp >= start_date).first()
# Get daily usage
daily_query = db.query(
func.date(ModelUsage.timestamp).label("date"),
func.sum(ModelUsage.total_tokens).label("tokens"),
func.sum(ModelUsage.cost).label("cost"),
func.count().label("requests")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date
).group_by(
func.date(ModelUsage.timestamp)
).order_by(
func.date(ModelUsage.timestamp)
)
daily_usage = [
{
"date": str(day.date),
"tokens": int(day.tokens or 0),
"cost": float(day.cost or 0),
"requests": int(day.requests or 0)
}
for day in daily_query
]
# Get model usage
model_query = db.query(
ModelUsage.model_name,
func.sum(ModelUsage.total_tokens).label("tokens"),
func.sum(ModelUsage.cost).label("cost"),
func.count().label("requests")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date
).group_by(
ModelUsage.model_name
).order_by(
desc(func.sum(ModelUsage.total_tokens))
)
model_usage = [
{
"model_name": model.model_name,
"tokens": int(model.tokens or 0),
"cost": float(model.cost or 0),
"requests": int(model.requests or 0)
}
for model in model_query
]
# Get top users
user_query = db.query(
ModelUsage.user_id,
func.sum(ModelUsage.total_tokens).label("tokens"),
func.sum(ModelUsage.cost).label("cost"),
func.count().label("requests")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date,
ModelUsage.user_id.isnot(None)
).group_by(
ModelUsage.user_id
).order_by(
desc(func.sum(ModelUsage.total_tokens))
).limit(10)
top_users = [
{
"user_id": str(user.user_id),
"tokens": int(user.tokens or 0),
"cost": float(user.cost or 0),
"requests": int(user.requests or 0)
}
for user in user_query
]
result = {
"total_tokens": int(total_stats.total_tokens or 0),
"total_cost": float(total_stats.total_cost or 0),
"total_requests": int(total_stats.total_requests or 0),
"total_users": int(total_stats.total_users or 0),
"daily_usage": daily_usage,
"model_usage": model_usage,
"top_users": top_users,
"start_date": start_date.strftime('%Y-%m-%d'),
"end_date": end_date.strftime('%Y-%m-%d'),
}
logger.log_message(f"Dashboard data retrieved: {len(daily_usage)} days, {len(model_usage)} models, {len(top_users)} top users", logging.INFO)
return result
# WebSocket endpoint for real-time dashboard updates
@router.websocket("/dashboard/realtime")
async def dashboard_realtime(websocket: WebSocket):
client_id = id(websocket)
logger.log_message(f"New dashboard realtime connection: {client_id}", logging.INFO)
await websocket.accept()
active_dashboard_connections.add(websocket)
try:
while True:
# Keep connection alive and wait for potential disconnection
await websocket.receive_text()
except Exception as e:
# Remove connection when client disconnects
logger.log_message(f"Dashboard realtime connection closed: {client_id}, reason: {str(e)}", logging.INFO)
active_dashboard_connections.remove(websocket)
await websocket.close()
# User analytics endpoints
@router.get("/users")
async def get_users(
limit: int = 100,
offset: int = 0,
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"User analytics requested with limit: {limit}, offset: {offset}", logging.INFO)
user_query = db.query(
ModelUsage.user_id,
func.sum(ModelUsage.total_tokens).label("tokens"),
func.sum(ModelUsage.cost).label("cost"),
func.count().label("requests"),
func.min(ModelUsage.timestamp).label("first_seen"),
func.max(ModelUsage.timestamp).label("last_seen")
).filter(
ModelUsage.user_id.isnot(None)
).group_by(
ModelUsage.user_id
).order_by(
desc(func.sum(ModelUsage.total_tokens))
).offset(offset).limit(limit)
users = [
{
"user_id": str(user.user_id),
"tokens": int(user.tokens or 0),
"cost": float(user.cost or 0),
"requests": int(user.requests or 0),
"first_seen": user.first_seen.isoformat() if user.first_seen else None,
"last_seen": user.last_seen.isoformat() if user.last_seen else None,
}
for user in user_query
]
# Get total users count for pagination
total_users = db.query(func.count(func.distinct(ModelUsage.user_id)))\
.filter(ModelUsage.user_id.isnot(None))\
.scalar() or 0
logger.log_message(f"Retrieved {len(users)} users, total users: {total_users}", logging.INFO)
return {
"users": users,
"total": total_users,
"limit": limit,
"offset": offset
}
@router.get("/users/activity")
async def get_user_activity(
period: str = "30d",
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"User activity requested for period: {period}", logging.INFO)
start_date, end_date = get_date_range(period)
# First, get a subquery for the first date each user was seen
first_seen_subquery = db.query(
ModelUsage.user_id,
func.date(func.min(ModelUsage.timestamp)).label("first_date")
).filter(
ModelUsage.user_id.isnot(None)
).group_by(
ModelUsage.user_id
).subquery()
# Get daily activity with normal metrics
daily_query = db.query(
func.date(ModelUsage.timestamp).label("date"),
func.count(func.distinct(ModelUsage.user_id)).label("active_users"),
func.count(func.distinct(ModelUsage.chat_id)).label("sessions")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date,
ModelUsage.user_id.isnot(None)
).group_by(
func.date(ModelUsage.timestamp)
).order_by(
func.date(ModelUsage.timestamp)
)
# Process results into expected format
activity_data = []
for day in daily_query:
date_str = str(day.date)
# Get new users count for this specific date
new_users_count = db.query(func.count()).select_from(first_seen_subquery).filter(
first_seen_subquery.c.first_date == day.date
).scalar() or 0
activity_data.append({
"date": date_str,
"activeUsers": int(day.active_users or 0),
"newUsers": int(new_users_count),
"sessions": int(day.sessions or 0)
})
# Fill in any missing dates with zeros
date_range = [(start_date + timedelta(days=i)).strftime('%Y-%m-%d')
for i in range((end_date - start_date).days + 1)]
activity_dict = {item["date"]: item for item in activity_data}
filled_activity = []
for date in date_range:
if date in activity_dict:
filled_activity.append(activity_dict[date])
else:
filled_activity.append({
"date": date,
"activeUsers": 0,
"newUsers": 0,
"sessions": 0
})
logger.log_message(f"Retrieved user activity data for {len(filled_activity)} days", logging.INFO)
return {"user_activity": filled_activity}
@router.get("/users/sessions/stats")
async def get_session_stats(
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message("Session statistics requested", logging.INFO)
# Total users ever
total_users = db.query(func.count(func.distinct(ModelUsage.user_id)))\
.filter(ModelUsage.user_id.isnot(None))\
.scalar() or 0
# Active users today
today = datetime.utcnow().date()
active_today = db.query(func.count(func.distinct(ModelUsage.user_id)))\
.filter(
func.date(ModelUsage.timestamp) == today,
ModelUsage.user_id.isnot(None)
).scalar() or 0
# Average queries per session - rewritten without window functions
# First, get count of messages per chat_id
chat_message_counts = db.query(
ModelUsage.chat_id,
func.count().label("msg_count")
).filter(
ModelUsage.chat_id.isnot(None)
).group_by(
ModelUsage.chat_id
).subquery()
# Then calculate the average
avg_queries = db.query(
func.avg(chat_message_counts.c.msg_count)
).scalar() or 0
# Average session time (approximated based on first and last message in each chat)
session_times = db.query(
ModelUsage.chat_id,
func.min(ModelUsage.timestamp).label("start_time"),
func.max(ModelUsage.timestamp).label("end_time")
).filter(
ModelUsage.chat_id.isnot(None)
).group_by(
ModelUsage.chat_id
).all()
total_seconds = 0
session_count = 0
for session in session_times:
if session.start_time and session.end_time:
duration = (session.end_time - session.start_time).total_seconds()
if duration > 0: # Filter out single-message sessions
total_seconds += duration
session_count += 1
avg_session_time = int(total_seconds / session_count) if session_count > 0 else 0
logger.log_message(f"Session stats retrieved: {total_users} total users, {active_today} active today", logging.INFO)
return {
"totalUsers": total_users,
"activeToday": active_today,
"avgQueriesPerSession": round(avg_queries, 1),
"avgSessionTime": avg_session_time
}
@router.websocket("/realtime")
async def user_realtime(websocket: WebSocket):
client_id = id(websocket)
logger.log_message(f"New user realtime connection: {client_id}", logging.INFO)
await websocket.accept()
active_user_connections.add(websocket)
try:
while True:
# Keep connection alive
await websocket.receive_text()
except Exception as e:
logger.log_message(f"User realtime connection closed: {client_id}, reason: {str(e)}", logging.INFO)
active_user_connections.remove(websocket)
await websocket.close()
# Model analytics endpoints
@router.get("/usage/models")
async def get_model_usage(
period: str = "30d",
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"Model usage requested for period: {period}", logging.INFO)
start_date, end_date = get_date_range(period)
# Get model usage breakdown
model_query = db.query(
ModelUsage.model_name,
func.sum(ModelUsage.total_tokens).label("tokens"),
func.sum(ModelUsage.cost).label("cost"),
func.count().label("requests"),
func.avg(ModelUsage.request_time_ms).label("avg_response_time")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date
).group_by(
ModelUsage.model_name
).order_by(
desc(func.sum(ModelUsage.total_tokens))
)
model_usage = [
{
"model_name": model.model_name,
"tokens": int(model.tokens or 0),
"cost": float(model.cost or 0),
"requests": int(model.requests or 0),
"avg_response_time": float(model.avg_response_time or 0) / 1000 if model.avg_response_time else 0
}
for model in model_query
]
logger.log_message(f"Retrieved model usage for {len(model_usage)} models", logging.INFO)
return {"model_usage": model_usage}
@router.get("/models/history")
async def get_model_history(
period: str = "30d",
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"Model history requested for period: {period}", logging.INFO)
start_date, end_date = get_date_range(period)
# Get daily usage per model
daily_model_query = db.query(
func.date(ModelUsage.timestamp).label("date"),
ModelUsage.model_name,
func.sum(ModelUsage.total_tokens).label("tokens"),
func.count().label("requests")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date
).group_by(
func.date(ModelUsage.timestamp),
ModelUsage.model_name
).order_by(
func.date(ModelUsage.timestamp)
)
# Transform into the format expected by the frontend
date_model_data = defaultdict(lambda: {"date": None, "models": []})
model_names = set()
for record in daily_model_query:
date_str = str(record.date)
date_model_data[date_str]["date"] = date_str
date_model_data[date_str]["models"].append({
"name": record.model_name,
"tokens": int(record.tokens or 0),
"requests": int(record.requests or 0)
})
model_names.add(record.model_name)
# Fill in any missing dates with zeros for all models
date_range = [(start_date + timedelta(days=i)).strftime('%Y-%m-%d')
for i in range((end_date - start_date).days + 1)]
model_history = []
for date in date_range:
if date in date_model_data:
# Check if all models are represented
existing_models = {m["name"] for m in date_model_data[date]["models"]}
for model_name in model_names:
if model_name not in existing_models:
date_model_data[date]["models"].append({
"name": model_name,
"tokens": 0,
"requests": 0
})
model_history.append(date_model_data[date])
else:
# Create an entry with zeros for all models
model_history.append({
"date": date,
"models": [{"name": model_name, "tokens": 0, "requests": 0} for model_name in model_names]
})
logger.log_message(f"Retrieved model history for {len(model_history)} days covering {len(model_names)} models", logging.INFO)
return {"model_history": model_history}
@router.get("/models/metrics")
async def get_model_metrics(
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message("Model metrics requested", logging.INFO)
# Calculate performance metrics for each model
metrics_query = db.query(
ModelUsage.model_name.label("name"),
func.avg(ModelUsage.total_tokens).label("avg_tokens"),
func.avg(ModelUsage.request_time_ms).label("avg_response_time"),
# Approximate success rate based on whether response has tokens
(1 - func.sum(case((ModelUsage.completion_tokens < 1, 1), else_=0)) / func.count()).label("success_rate")
).group_by(
ModelUsage.model_name
).order_by(
desc(func.avg(ModelUsage.total_tokens))
)
model_metrics = [
{
"name": metrics.name,
"avg_tokens": float(metrics.avg_tokens or 0),
"avg_response_time": float(metrics.avg_response_time or 0) / 1000 if metrics.avg_response_time else 0,
"success_rate": float(metrics.success_rate or 0.95) # Default to 95% if undefined
}
for metrics in metrics_query.all() # Fetch all results to avoid lazy loading!!!
]
logger.log_message(f"Retrieved metrics for {len(model_metrics)} models", logging.INFO)
return {"model_metrics": model_metrics}
# Cost analytics endpoints
@router.get("/costs/summary")
async def get_cost_summary(
period: str = "30d",
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"Cost summary requested for period: {period}", logging.INFO)
start_date, end_date = get_date_range(period)
# Get cost summary
summary = db.query(
func.sum(ModelUsage.cost).label("total_cost"),
func.sum(ModelUsage.total_tokens).label("total_tokens"),
func.count().label("total_requests")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date
).first()
# Calculate average daily costs
days = (end_date - start_date).days or 1 # Avoid division by zero
result = {
"totalCost": float(summary.total_cost or 0),
"totalTokens": int(summary.total_tokens or 0),
"totalRequests": int(summary.total_requests or 0),
"avgDailyCost": float(summary.total_cost or 0) / days,
"costPerThousandTokens": float(summary.total_cost or 0) / (int(summary.total_tokens or 1) / 1000),
"daysInPeriod": days,
"startDate": start_date.strftime('%Y-%m-%d'),
"endDate": end_date.strftime('%Y-%m-%d')
}
logger.log_message(f"Cost summary retrieved: ${result['totalCost']:.2f} over {days} days", logging.INFO)
return result
@router.get("/costs/daily")
async def get_daily_costs(
period: str = "30d",
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"Daily costs requested for period: {period}", logging.INFO)
start_date, end_date = get_date_range(period)
# Get daily costs
daily_query = db.query(
func.date(ModelUsage.timestamp).label("date"),
func.sum(ModelUsage.cost).label("cost"),
func.sum(ModelUsage.total_tokens).label("tokens")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date
).group_by(
func.date(ModelUsage.timestamp)
).order_by(
func.date(ModelUsage.timestamp)
)
daily_costs = [
{
"date": str(day.date),
"cost": float(day.cost or 0),
"tokens": int(day.tokens or 0)
}
for day in daily_query
]
# Fill in any missing dates with zeros
date_range = [(start_date + timedelta(days=i)).strftime('%Y-%m-%d')
for i in range((end_date - start_date).days + 1)]
costs_dict = {item["date"]: item for item in daily_costs}
filled_costs = []
for date in date_range:
if date in costs_dict:
filled_costs.append(costs_dict[date])
else:
filled_costs.append({
"date": date,
"cost": 0.0,
"tokens": 0
})
logger.log_message(f"Retrieved daily costs for {len(filled_costs)} days", logging.INFO)
return {"daily_costs": filled_costs}
@router.get("/costs/models")
async def get_model_costs(
period: str = "30d",
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"Model costs requested for period: {period}", logging.INFO)
start_date, end_date = get_date_range(period)
# Get costs by model
model_query = db.query(
ModelUsage.model_name,
func.sum(ModelUsage.cost).label("cost"),
func.sum(ModelUsage.total_tokens).label("tokens"),
func.count().label("requests")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date
).group_by(
ModelUsage.model_name
).order_by(
desc(func.sum(ModelUsage.cost))
)
model_costs = [
{
"model_name": model.model_name,
"cost": float(model.cost or 0),
"tokens": int(model.tokens or 0),
"requests": int(model.requests or 0)
}
for model in model_query
]
logger.log_message(f"Retrieved cost data for {len(model_costs)} models", logging.INFO)
return {"model_costs": model_costs}
@router.get("/costs/projections")
async def get_cost_projections(
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message("Cost projections requested", logging.INFO)
# Get last 30 days usage as baseline
thirty_days_ago = datetime.utcnow() - timedelta(days=30)
baseline = db.query(
func.sum(ModelUsage.cost).label("total_cost"),
func.sum(ModelUsage.total_tokens).label("total_tokens"),
func.count().label("days")
).filter(
ModelUsage.timestamp >= thirty_days_ago
).first()
# Calculate daily averages
actual_days = db.query(func.count(func.distinct(func.date(ModelUsage.timestamp))))\
.filter(ModelUsage.timestamp >= thirty_days_ago)\
.scalar() or 1 # Avoid division by zero
daily_cost = float(baseline.total_cost or 0) / actual_days
daily_tokens = int(baseline.total_tokens or 0) / actual_days
# Project future costs
result = {
"nextMonth": daily_cost * 30,
"next3Months": daily_cost * 90,
"nextYear": daily_cost * 365,
"tokensNextMonth": daily_tokens * 30,
"dailyCost": daily_cost,
"dailyTokens": daily_tokens,
"baselineDays": actual_days
}
logger.log_message(f"Cost projections calculated: ${result['nextMonth']:.2f}/month, ${result['nextYear']:.2f}/year", logging.INFO)
return result
@router.get("/costs/today")
async def get_today_costs(
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message("Today's costs requested", logging.INFO)
today = datetime.utcnow().date()
# Get today's costs
today_data = db.query(
func.sum(ModelUsage.cost).label("cost"),
func.sum(ModelUsage.total_tokens).label("tokens"),
func.count().label("requests")
).filter(
func.date(ModelUsage.timestamp) == today
).first()
result = {
"date": today.strftime('%Y-%m-%d'),
"cost": float(today_data.cost or 0),
"tokens": int(today_data.tokens or 0),
"requests": int(today_data.requests or 0)
}
logger.log_message(f"Today's costs retrieved: ${result['cost']:.2f}, {result['tokens']} tokens", logging.INFO)
return result
# Debug endpoint for testing admin key
@router.get("/debug/model_usage")
async def debug_model_usage(api_key: str = Depends(verify_admin_api_key)):
logger.log_message("Debug model usage endpoint accessed", logging.INFO)
return {"status": "success", "message": "Admin API key validated successfully"}
# Function to broadcast real-time updates to all connected dashboard clients
async def broadcast_dashboard_update(update_data: Dict[str, Any]):
if not active_dashboard_connections:
return
connection_count = len(active_dashboard_connections)
logger.log_message(f"Broadcasting dashboard update to {connection_count} connections", logging.INFO)
for connection in active_dashboard_connections.copy():
try:
await connection.send_text(json.dumps(update_data))
except Exception as e:
logger.log_message(f"Failed to send dashboard update: {str(e)}", logging.WARNING)
active_dashboard_connections.remove(connection)
# Function to broadcast real-time updates to all connected user analytics clients
async def broadcast_user_update(update_data: Dict[str, Any]):
if not active_user_connections:
return
connection_count = len(active_user_connections)
logger.log_message(f"Broadcasting user update to {connection_count} connections", logging.INFO)
for connection in active_user_connections.copy():
try:
await connection.send_text(json.dumps(update_data))
except Exception as e:
logger.log_message(f"Failed to send user update: {str(e)}", logging.WARNING)
active_user_connections.remove(connection)
# Usage summary endpoint (to maintain backward compatibility)
@router.get("/usage/summary")
async def get_usage_summary(
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message("Usage summary requested (legacy endpoint)", logging.INFO)
# Call the dashboard endpoint with default period
return await get_dashboard_data(period="30d", db=db, api_key=api_key)
# Event handler for new ModelUsage entries
async def handle_new_model_usage(model_usage: ModelUsage):
"""
Process a new model usage event and broadcast updates to connected clients.
This function should be called whenever a new model usage record is created.
"""
# Ensure the model_usage instance is refreshed and bound to a session
session = get_session() # Assuming get_session() is a function that provides a new session
try:
# Refresh the instance to ensure it's bound to the session
session.refresh(model_usage)
model_usage = session.merge(model_usage) # Reattach to session
session.refresh(model_usage) # Refresh attributes
logger.log_message(f"Processing new model usage event: {model_usage.model_name}, user: {model_usage.user_id}", level=logging.INFO)
date_str = model_usage.timestamp.strftime('%Y-%m-%d') if model_usage.timestamp else None
# Create dashboard update
dashboard_update = {
"type": "usage_update",
"date": date_str,
"metrics": {
"tokens_delta": model_usage.total_tokens,
"cost_delta": model_usage.cost,
"requests_delta": 1
}
}
# Create model update
model_update = {
"type": "model_update",
"model_name": model_usage.model_name,
"metrics": {
"tokens": model_usage.total_tokens,
"cost": model_usage.cost,
"requests": 1
}
}
if model_usage.user_id:
user_update = {
"type": "user_activity",
"date": date_str,
"metrics": {
"activeUsers": 1, # This will be merged with existing data
"sessions": 1 if model_usage.chat_id else 0
}
}
await broadcast_user_update(user_update)
# Broadcast updates
await broadcast_dashboard_update(dashboard_update)
await broadcast_dashboard_update(model_update)
logger.log_message("Model usage updates broadcasted successfully", logging.INFO)
except Exception as e:
logger.log_message(f"Error processing model usage event: {str(e)}", logging.ERROR)
finally:
session.close() # Ensure the session is closed after use
@router.get("/tiers/usage")
async def get_tier_usage(
period: str = "30d",
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"Tier usage requested for period: {period}", logging.INFO)
start_date, end_date = get_date_range(period)
# Get all model usage during the period
model_query = db.query(
ModelUsage.model_name,
func.sum(ModelUsage.total_tokens).label("tokens"),
func.count().label("requests"),
func.sum(ModelUsage.cost).label("cost"),
func.avg(ModelUsage.total_tokens).label("avg_tokens_per_query")
).filter(
ModelUsage.timestamp >= start_date,
ModelUsage.timestamp <= end_date
).group_by(
ModelUsage.model_name
).all()
# Initialize tier data
tier_data = {
tier_id: {
"name": tier_info["name"],
"credits": tier_info["credits"],
"total_tokens": 0,
"total_requests": 0,
"total_cost": 0.0,
"avg_tokens_per_query": 0,
"cost_per_1k_tokens": 0.0,
"models": []
}
for tier_id, tier_info in MODEL_TIERS.items()
}
# Aggregate data by tier
for model in model_query:
tier_id = get_model_tier(model.model_name)
# Add model to the appropriate tier
tier_data[tier_id]["models"].append({
"name": model.model_name,
"tokens": int(model.tokens or 0),
"requests": int(model.requests or 0),
"cost": float(model.cost or 0),
"avg_tokens_per_query": float(model.avg_tokens_per_query or 0)
})
# Update tier totals
tier_data[tier_id]["total_tokens"] += int(model.tokens or 0)
tier_data[tier_id]["total_requests"] += int(model.requests or 0)
tier_data[tier_id]["total_cost"] += float(model.cost or 0)
# Calculate averages and costs per 1k tokens for each tier
for tier_id, data in tier_data.items():
if data["total_requests"] > 0:
data["avg_tokens_per_query"] = data["total_tokens"] / data["total_requests"]
if data["total_tokens"] > 0:
data["cost_per_1k_tokens"] = (data["total_cost"] / data["total_tokens"]) * 1000
# Calculate credit cost (what the user is paying in credits)
data["total_credit_cost"] = data["total_requests"] * data["credits"]
# Calculate effective cost per credit
if data["total_credit_cost"] > 0:
data["cost_per_credit"] = data["total_cost"] / data["total_credit_cost"]
else:
data["cost_per_credit"] = 0
logger.log_message(f"Retrieved tier usage data for {len(tier_data)} tiers", logging.INFO)
return {
"tier_data": tier_data,
"period": period,
"start_date": start_date.strftime('%Y-%m-%d'),
"end_date": end_date.strftime('%Y-%m-%d')
}
@router.get("/tiers/projections")
async def get_tier_projections(
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message("Tier projections requested", logging.INFO)
# Get last 30 days usage for baseline
tier_usage = await get_tier_usage(period="30d", db=db, api_key=api_key)
tier_data = tier_usage["tier_data"]
# Calculate daily averages by tier
daily_tier_usage = {
tier_id: {
"name": data["name"],
"daily_requests": data["total_requests"] / 30,
"daily_tokens": data["total_tokens"] / 30,
"daily_cost": data["total_cost"] / 30,
"daily_credits": data["total_credit_cost"] / 30
}
for tier_id, data in tier_data.items()
}
# Calculate projections
projections = {
"monthly": {
"requests": {},
"tokens": {},
"cost": {},
"credits": {}
},
"quarterly": {
"requests": {},
"tokens": {},
"cost": {},
"credits": {}
},
"yearly": {
"requests": {},
"tokens": {},
"cost": {},
"credits": {}
}
}
# Calculate for each tier
for tier_id, data in daily_tier_usage.items():
# Monthly projections (30 days)
projections["monthly"]["requests"][tier_id] = data["daily_requests"] * 30
projections["monthly"]["tokens"][tier_id] = data["daily_tokens"] * 30
projections["monthly"]["cost"][tier_id] = data["daily_cost"] * 30
projections["monthly"]["credits"][tier_id] = data["daily_credits"] * 30
# Quarterly projections (90 days)
projections["quarterly"]["requests"][tier_id] = data["daily_requests"] * 90
projections["quarterly"]["tokens"][tier_id] = data["daily_tokens"] * 90
projections["quarterly"]["cost"][tier_id] = data["daily_cost"] * 90
projections["quarterly"]["credits"][tier_id] = data["daily_credits"] * 90
# Yearly projections (365 days)
projections["yearly"]["requests"][tier_id] = data["daily_requests"] * 365
projections["yearly"]["tokens"][tier_id] = data["daily_tokens"] * 365
projections["yearly"]["cost"][tier_id] = data["daily_cost"] * 365
projections["yearly"]["credits"][tier_id] = data["daily_credits"] * 365
# Add totals for each projection period
for period in ["monthly", "quarterly", "yearly"]:
for metric in ["requests", "tokens", "cost", "credits"]:
projections[period][f"total_{metric}"] = sum(projections[period][metric].values())
logger.log_message(f"Tier projections calculated for {len(daily_tier_usage)} tiers", logging.INFO)
return {
"daily_usage": daily_tier_usage,
"projections": projections,
"tier_definitions": MODEL_TIERS
}
@router.get("/tiers/efficiency")
async def get_tier_efficiency(
period: str = "30d",
db: Session = Depends(get_db),
api_key: str = Depends(verify_admin_api_key)
):
logger.log_message(f"Tier efficiency requested for period: {period}", logging.INFO)
# Get tier usage data
tier_usage = await get_tier_usage(period=period, db=db, api_key=api_key)
tier_data = tier_usage["tier_data"]
# Calculate efficiency metrics
efficiency_data = {}
for tier_id, data in tier_data.items():
tokens_per_credit = data["total_tokens"] / data["total_credit_cost"] if data["total_credit_cost"] > 0 else 0
cost_per_credit = data["total_cost"] / data["total_credit_cost"] if data["total_credit_cost"] > 0 else 0
efficiency_data[tier_id] = {
"name": data["name"],
"tokens_per_credit": tokens_per_credit,
"cost_per_credit": cost_per_credit,
"credit_cost": data["credits"],
"cost_per_1k_tokens": data["cost_per_1k_tokens"],
"avg_tokens_per_query": data["avg_tokens_per_query"],
"total_requests": data["total_requests"],
"total_tokens": data["total_tokens"],
"total_cost": data["total_cost"]
}
# Determine most efficient tier based on tokens per credit
most_efficient_tier = max(
efficiency_data.items(),
key=lambda x: x[1]["tokens_per_credit"] if x[1]["tokens_per_credit"] > 0 else 0,
default=(None, {})
)[0]
# Determine best value tier based on cost per credit
best_value_tier = min(
efficiency_data.items(),
key=lambda x: x[1]["cost_per_credit"] if x[1]["cost_per_credit"] > 0 else float('inf'),
default=(None, {})
)[0]
logger.log_message(f"Tier efficiency calculated for {len(efficiency_data)} tiers", logging.INFO)
return {
"efficiency_data": efficiency_data,
"most_efficient_tier": most_efficient_tier,
"best_value_tier": best_value_tier,
"period": period,
"start_date": tier_usage["start_date"],
"end_date": tier_usage["end_date"]
} |