File size: 38,641 Bytes
d32c69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a1094
d32c69c
 
 
 
 
 
 
 
 
 
 
 
d7a1094
d32c69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a1094
d32c69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
import json
import logging
import os
from collections import defaultdict
from datetime import datetime, timedelta

from fastapi import APIRouter, Depends, HTTPException, Query, Request, WebSocket
from fastapi.security import APIKeyHeader

from pydantic import BaseModel

from sqlalchemy import case, desc, func
from sqlalchemy.orm import Session

from src.db.init_db import get_db, get_session
from src.db.schemas.models import ModelUsage
from src.managers.chat_manager import ChatManager

from typing import Any, Dict, List, Optional
from src.utils.logger import Logger
from src.utils.model_registry import MODEL_TIERS, get_model_tier as get_model_tier_from_registry

# Initialize logger with console logging disabled
logger = Logger("analytics_routes", see_time=True, console_log=False)

# Initialize router
router = APIRouter(prefix="/analytics", tags=["analytics"])

# Disable logging
if os.getenv("ENVIRONMENT") == "production":
    logger.disable_logging()

# Initialize chat manager
chat_manager = ChatManager(db_url=os.getenv("DATABASE_URL"))

# API Key security
ADMIN_API_KEY = os.getenv("ADMIN_API_KEY", "default-admin-key-change-me")
api_key_header = APIKeyHeader(name="X-Admin-API-Key", auto_error=False)

# Dependency to check admin API key
async def verify_admin_api_key(
    api_key: str = Depends(api_key_header),
    request: Request = None
):
    # Check header first
    if api_key and api_key == ADMIN_API_KEY:
        logger.log_message("Admin API key successfully verified via header", logging.INFO)
        return True
        
    # If API key wasn't in header or didn't match, check query parameters
    if request:
        api_key_query = request.query_params.get("admin_api_key")
        if api_key_query and api_key_query == ADMIN_API_KEY:
            logger.log_message("Admin API key successfully verified via query parameter", logging.INFO)
            return True
    
    # If we got here, the API key is invalid
    logger.log_message("Invalid or missing admin API key attempt", level=logging.WARNING)
    raise HTTPException(
        status_code=403,
        detail="Invalid or missing admin API key"
    )

# Active WebSocket connections for real-time updates
active_dashboard_connections = set()
active_user_connections = set()

# Helper function to determine model tier
def get_model_tier(model_name):
    """Determine which tier a model belongs to based on its name"""
    return get_model_tier_from_registry(model_name)

# Helper function to parse period parameter
def get_date_range(period: str):
    today = datetime.utcnow()
    if period == '7d':
        start_date = today - timedelta(days=7)
    elif period == '30d':
        start_date = today - timedelta(days=30)
    elif period == '90d':
        start_date = today - timedelta(days=90)
    else:
        start_date = today - timedelta(days=30)  # Default to 30 days
    
    return start_date, today

# Dashboard endpoint - combines summary data for the main dashboard
@router.get("/dashboard")
async def get_dashboard_data(
    period: str = "30d", 
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"Dashboard data requested for period: {period}", logging.INFO)
    start_date, end_date = get_date_range(period)
    
    # Get total stats
    total_stats = db.query(
        func.sum(ModelUsage.total_tokens).label("total_tokens"),
        func.sum(ModelUsage.cost).label("total_cost"),
        func.count().label("total_requests"),
        func.count(func.distinct(ModelUsage.user_id)).label("total_users")
    ).filter(ModelUsage.timestamp >= start_date).first()
    
    # Get daily usage
    daily_query = db.query(
        func.date(ModelUsage.timestamp).label("date"),
        func.sum(ModelUsage.total_tokens).label("tokens"),
        func.sum(ModelUsage.cost).label("cost"),
        func.count().label("requests")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date
    ).group_by(
        func.date(ModelUsage.timestamp)
    ).order_by(
        func.date(ModelUsage.timestamp)
    )
    
    daily_usage = [
        {
            "date": str(day.date),
            "tokens": int(day.tokens or 0),
            "cost": float(day.cost or 0),
            "requests": int(day.requests or 0)
        }
        for day in daily_query
    ]
    
    # Get model usage
    model_query = db.query(
        ModelUsage.model_name,
        func.sum(ModelUsage.total_tokens).label("tokens"),
        func.sum(ModelUsage.cost).label("cost"),
        func.count().label("requests")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date
    ).group_by(
        ModelUsage.model_name
    ).order_by(
        desc(func.sum(ModelUsage.total_tokens))
    )
    
    model_usage = [
        {
            "model_name": model.model_name,
            "tokens": int(model.tokens or 0),
            "cost": float(model.cost or 0),
            "requests": int(model.requests or 0)
        }
        for model in model_query
    ]
    
    # Get top users
    user_query = db.query(
        ModelUsage.user_id,
        func.sum(ModelUsage.total_tokens).label("tokens"),
        func.sum(ModelUsage.cost).label("cost"),
        func.count().label("requests")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date,
        ModelUsage.user_id.isnot(None)
    ).group_by(
        ModelUsage.user_id
    ).order_by(
        desc(func.sum(ModelUsage.total_tokens))
    ).limit(10)
    
    top_users = [
        {
            "user_id": str(user.user_id),
            "tokens": int(user.tokens or 0),
            "cost": float(user.cost or 0),
            "requests": int(user.requests or 0)
        }
        for user in user_query
    ]
    
    result = {
        "total_tokens": int(total_stats.total_tokens or 0),
        "total_cost": float(total_stats.total_cost or 0),
        "total_requests": int(total_stats.total_requests or 0),
        "total_users": int(total_stats.total_users or 0),
        "daily_usage": daily_usage,
        "model_usage": model_usage,
        "top_users": top_users,
        "start_date": start_date.strftime('%Y-%m-%d'),
        "end_date": end_date.strftime('%Y-%m-%d'),
    }
    logger.log_message(f"Dashboard data retrieved: {len(daily_usage)} days, {len(model_usage)} models, {len(top_users)} top users", logging.INFO)
    return result

# WebSocket endpoint for real-time dashboard updates
@router.websocket("/dashboard/realtime")
async def dashboard_realtime(websocket: WebSocket):
    client_id = id(websocket)
    logger.log_message(f"New dashboard realtime connection: {client_id}", logging.INFO)
    await websocket.accept()
    active_dashboard_connections.add(websocket)
    
    try:
        while True:
            # Keep connection alive and wait for potential disconnection
            await websocket.receive_text()
    except Exception as e:
        # Remove connection when client disconnects
        logger.log_message(f"Dashboard realtime connection closed: {client_id}, reason: {str(e)}", logging.INFO)
        active_dashboard_connections.remove(websocket)
        await websocket.close()

# User analytics endpoints
@router.get("/users")
async def get_users(
    limit: int = 100,
    offset: int = 0,
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"User analytics requested with limit: {limit}, offset: {offset}", logging.INFO)
    user_query = db.query(
        ModelUsage.user_id,
        func.sum(ModelUsage.total_tokens).label("tokens"),
        func.sum(ModelUsage.cost).label("cost"),
        func.count().label("requests"),
        func.min(ModelUsage.timestamp).label("first_seen"),
        func.max(ModelUsage.timestamp).label("last_seen")
    ).filter(
        ModelUsage.user_id.isnot(None)
    ).group_by(
        ModelUsage.user_id
    ).order_by(
        desc(func.sum(ModelUsage.total_tokens))
    ).offset(offset).limit(limit)
    
    users = [
        {
            "user_id": str(user.user_id),
            "tokens": int(user.tokens or 0),
            "cost": float(user.cost or 0),
            "requests": int(user.requests or 0),
            "first_seen": user.first_seen.isoformat() if user.first_seen else None,
            "last_seen": user.last_seen.isoformat() if user.last_seen else None,
        }
        for user in user_query
    ]
    
    # Get total users count for pagination
    total_users = db.query(func.count(func.distinct(ModelUsage.user_id)))\
        .filter(ModelUsage.user_id.isnot(None))\
        .scalar() or 0
    
    logger.log_message(f"Retrieved {len(users)} users, total users: {total_users}", logging.INFO)
    return {
        "users": users,
        "total": total_users,
        "limit": limit,
        "offset": offset
    }

@router.get("/users/activity")
async def get_user_activity(
    period: str = "30d",
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"User activity requested for period: {period}", logging.INFO)
    start_date, end_date = get_date_range(period)
    
    # First, get a subquery for the first date each user was seen
    first_seen_subquery = db.query(
        ModelUsage.user_id,
        func.date(func.min(ModelUsage.timestamp)).label("first_date")
    ).filter(
        ModelUsage.user_id.isnot(None)
    ).group_by(
        ModelUsage.user_id
    ).subquery()
    
    # Get daily activity with normal metrics
    daily_query = db.query(
        func.date(ModelUsage.timestamp).label("date"),
        func.count(func.distinct(ModelUsage.user_id)).label("active_users"),
        func.count(func.distinct(ModelUsage.chat_id)).label("sessions")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date,
        ModelUsage.user_id.isnot(None)
    ).group_by(
        func.date(ModelUsage.timestamp)
    ).order_by(
        func.date(ModelUsage.timestamp)
    )
    
    # Process results into expected format
    activity_data = []
    for day in daily_query:
        date_str = str(day.date)
        
        # Get new users count for this specific date
        new_users_count = db.query(func.count()).select_from(first_seen_subquery).filter(
            first_seen_subquery.c.first_date == day.date
        ).scalar() or 0
        
        activity_data.append({
            "date": date_str,
            "activeUsers": int(day.active_users or 0),
            "newUsers": int(new_users_count),
            "sessions": int(day.sessions or 0)
        })
    
    # Fill in any missing dates with zeros
    date_range = [(start_date + timedelta(days=i)).strftime('%Y-%m-%d') 
                  for i in range((end_date - start_date).days + 1)]
    
    activity_dict = {item["date"]: item for item in activity_data}
    
    filled_activity = []
    for date in date_range:
        if date in activity_dict:
            filled_activity.append(activity_dict[date])
        else:
            filled_activity.append({
                "date": date,
                "activeUsers": 0,
                "newUsers": 0,
                "sessions": 0
            })
    
    logger.log_message(f"Retrieved user activity data for {len(filled_activity)} days", logging.INFO)
    return {"user_activity": filled_activity}

@router.get("/users/sessions/stats")
async def get_session_stats(
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message("Session statistics requested", logging.INFO)
    # Total users ever
    total_users = db.query(func.count(func.distinct(ModelUsage.user_id)))\
        .filter(ModelUsage.user_id.isnot(None))\
        .scalar() or 0
    
    # Active users today
    today = datetime.utcnow().date()
    active_today = db.query(func.count(func.distinct(ModelUsage.user_id)))\
        .filter(
            func.date(ModelUsage.timestamp) == today,
            ModelUsage.user_id.isnot(None)
        ).scalar() or 0
    
    # Average queries per session - rewritten without window functions
    # First, get count of messages per chat_id
    chat_message_counts = db.query(
        ModelUsage.chat_id,
        func.count().label("msg_count")
    ).filter(
        ModelUsage.chat_id.isnot(None)
    ).group_by(
        ModelUsage.chat_id
    ).subquery()
    
    # Then calculate the average
    avg_queries = db.query(
        func.avg(chat_message_counts.c.msg_count)
    ).scalar() or 0
    
    # Average session time (approximated based on first and last message in each chat)
    session_times = db.query(
        ModelUsage.chat_id,
        func.min(ModelUsage.timestamp).label("start_time"),
        func.max(ModelUsage.timestamp).label("end_time")
    ).filter(
        ModelUsage.chat_id.isnot(None)
    ).group_by(
        ModelUsage.chat_id
    ).all()
    
    total_seconds = 0
    session_count = 0
    
    for session in session_times:
        if session.start_time and session.end_time:
            duration = (session.end_time - session.start_time).total_seconds()
            if duration > 0:  # Filter out single-message sessions
                total_seconds += duration
                session_count += 1
    
    avg_session_time = int(total_seconds / session_count) if session_count > 0 else 0
    
    logger.log_message(f"Session stats retrieved: {total_users} total users, {active_today} active today", logging.INFO)
    return {
        "totalUsers": total_users,
        "activeToday": active_today,
        "avgQueriesPerSession": round(avg_queries, 1),
        "avgSessionTime": avg_session_time
    }

@router.websocket("/realtime")
async def user_realtime(websocket: WebSocket):
    client_id = id(websocket)
    logger.log_message(f"New user realtime connection: {client_id}", logging.INFO)
    await websocket.accept()
    active_user_connections.add(websocket)
    
    try:
        while True:
            # Keep connection alive
            await websocket.receive_text()
    except Exception as e:
        logger.log_message(f"User realtime connection closed: {client_id}, reason: {str(e)}", logging.INFO)
        active_user_connections.remove(websocket)
        await websocket.close()

# Model analytics endpoints
@router.get("/usage/models")
async def get_model_usage(
    period: str = "30d",
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"Model usage requested for period: {period}", logging.INFO)
    start_date, end_date = get_date_range(period)
    
    # Get model usage breakdown
    model_query = db.query(
        ModelUsage.model_name,
        func.sum(ModelUsage.total_tokens).label("tokens"),
        func.sum(ModelUsage.cost).label("cost"),
        func.count().label("requests"),
        func.avg(ModelUsage.request_time_ms).label("avg_response_time")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date
    ).group_by(
        ModelUsage.model_name
    ).order_by(
        desc(func.sum(ModelUsage.total_tokens))
    )
    
    model_usage = [
        {
            "model_name": model.model_name,
            "tokens": int(model.tokens or 0),
            "cost": float(model.cost or 0),
            "requests": int(model.requests or 0),
            "avg_response_time": float(model.avg_response_time or 0) / 1000 if model.avg_response_time else 0
        }
        for model in model_query
    ]
    
    logger.log_message(f"Retrieved model usage for {len(model_usage)} models", logging.INFO)
    return {"model_usage": model_usage}

@router.get("/models/history")
async def get_model_history(
    period: str = "30d",
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"Model history requested for period: {period}", logging.INFO)
    start_date, end_date = get_date_range(period)
    
    # Get daily usage per model
    daily_model_query = db.query(
        func.date(ModelUsage.timestamp).label("date"),
        ModelUsage.model_name,
        func.sum(ModelUsage.total_tokens).label("tokens"),
        func.count().label("requests")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date
    ).group_by(
        func.date(ModelUsage.timestamp),
        ModelUsage.model_name
    ).order_by(
        func.date(ModelUsage.timestamp)
    )
    
    # Transform into the format expected by the frontend
    date_model_data = defaultdict(lambda: {"date": None, "models": []})
    model_names = set()
    
    for record in daily_model_query:
        date_str = str(record.date)
        date_model_data[date_str]["date"] = date_str
        date_model_data[date_str]["models"].append({
            "name": record.model_name,
            "tokens": int(record.tokens or 0),
            "requests": int(record.requests or 0)
        })
        model_names.add(record.model_name)
    
    # Fill in any missing dates with zeros for all models
    date_range = [(start_date + timedelta(days=i)).strftime('%Y-%m-%d') 
                  for i in range((end_date - start_date).days + 1)]
    
    model_history = []
    for date in date_range:
        if date in date_model_data:
            # Check if all models are represented
            existing_models = {m["name"] for m in date_model_data[date]["models"]}
            for model_name in model_names:
                if model_name not in existing_models:
                    date_model_data[date]["models"].append({
                        "name": model_name,
                        "tokens": 0,
                        "requests": 0
                    })
            model_history.append(date_model_data[date])
        else:
            # Create an entry with zeros for all models
            model_history.append({
                "date": date,
                "models": [{"name": model_name, "tokens": 0, "requests": 0} for model_name in model_names]
            })
    
    logger.log_message(f"Retrieved model history for {len(model_history)} days covering {len(model_names)} models", logging.INFO)
    return {"model_history": model_history}

@router.get("/models/metrics")
async def get_model_metrics(
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message("Model metrics requested", logging.INFO)
    # Calculate performance metrics for each model
    metrics_query = db.query(
        ModelUsage.model_name.label("name"),
        func.avg(ModelUsage.total_tokens).label("avg_tokens"),
        func.avg(ModelUsage.request_time_ms).label("avg_response_time"),
        # Approximate success rate based on whether response has tokens
        (1 - func.sum(case((ModelUsage.completion_tokens < 1, 1), else_=0)) / func.count()).label("success_rate")
    ).group_by(
        ModelUsage.model_name
    ).order_by(
        desc(func.avg(ModelUsage.total_tokens))
    )
    
    model_metrics = [
        {
            "name": metrics.name,
            "avg_tokens": float(metrics.avg_tokens or 0),
            "avg_response_time": float(metrics.avg_response_time or 0) / 1000 if metrics.avg_response_time else 0,
            "success_rate": float(metrics.success_rate or 0.95)  # Default to 95% if undefined
        }
        for metrics in metrics_query.all()  # Fetch all results to avoid lazy loading!!!
    ]
    
    logger.log_message(f"Retrieved metrics for {len(model_metrics)} models", logging.INFO)
    return {"model_metrics": model_metrics}

# Cost analytics endpoints
@router.get("/costs/summary")
async def get_cost_summary(
    period: str = "30d",
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"Cost summary requested for period: {period}", logging.INFO)
    start_date, end_date = get_date_range(period)
    
    # Get cost summary
    summary = db.query(
        func.sum(ModelUsage.cost).label("total_cost"),
        func.sum(ModelUsage.total_tokens).label("total_tokens"),
        func.count().label("total_requests")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date
    ).first()
    
    # Calculate average daily costs
    days = (end_date - start_date).days or 1  # Avoid division by zero
    
    result = {
        "totalCost": float(summary.total_cost or 0),
        "totalTokens": int(summary.total_tokens or 0),
        "totalRequests": int(summary.total_requests or 0),
        "avgDailyCost": float(summary.total_cost or 0) / days,
        "costPerThousandTokens": float(summary.total_cost or 0) / (int(summary.total_tokens or 1) / 1000),
        "daysInPeriod": days,
        "startDate": start_date.strftime('%Y-%m-%d'),
        "endDate": end_date.strftime('%Y-%m-%d')
    }
    logger.log_message(f"Cost summary retrieved: ${result['totalCost']:.2f} over {days} days", logging.INFO)
    return result

@router.get("/costs/daily")
async def get_daily_costs(
    period: str = "30d",
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"Daily costs requested for period: {period}", logging.INFO)
    start_date, end_date = get_date_range(period)
    
    # Get daily costs
    daily_query = db.query(
        func.date(ModelUsage.timestamp).label("date"),
        func.sum(ModelUsage.cost).label("cost"),
        func.sum(ModelUsage.total_tokens).label("tokens")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date
    ).group_by(
        func.date(ModelUsage.timestamp)
    ).order_by(
        func.date(ModelUsage.timestamp)
    )
    
    daily_costs = [
        {
            "date": str(day.date),
            "cost": float(day.cost or 0),
            "tokens": int(day.tokens or 0)
        }
        for day in daily_query
    ]
    
    # Fill in any missing dates with zeros
    date_range = [(start_date + timedelta(days=i)).strftime('%Y-%m-%d') 
                  for i in range((end_date - start_date).days + 1)]
    
    costs_dict = {item["date"]: item for item in daily_costs}
    
    filled_costs = []
    for date in date_range:
        if date in costs_dict:
            filled_costs.append(costs_dict[date])
        else:
            filled_costs.append({
                "date": date,
                "cost": 0.0,
                "tokens": 0
            })
    
    logger.log_message(f"Retrieved daily costs for {len(filled_costs)} days", logging.INFO)
    return {"daily_costs": filled_costs}

@router.get("/costs/models")
async def get_model_costs(
    period: str = "30d",
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"Model costs requested for period: {period}", logging.INFO)
    start_date, end_date = get_date_range(period)
    
    # Get costs by model
    model_query = db.query(
        ModelUsage.model_name,
        func.sum(ModelUsage.cost).label("cost"),
        func.sum(ModelUsage.total_tokens).label("tokens"),
        func.count().label("requests")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date
    ).group_by(
        ModelUsage.model_name
    ).order_by(
        desc(func.sum(ModelUsage.cost))
    )
    
    model_costs = [
        {
            "model_name": model.model_name,
            "cost": float(model.cost or 0),
            "tokens": int(model.tokens or 0),
            "requests": int(model.requests or 0)
        }
        for model in model_query
    ]
    
    logger.log_message(f"Retrieved cost data for {len(model_costs)} models", logging.INFO)
    return {"model_costs": model_costs}

@router.get("/costs/projections")
async def get_cost_projections(
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message("Cost projections requested", logging.INFO)
    # Get last 30 days usage as baseline
    thirty_days_ago = datetime.utcnow() - timedelta(days=30)
    
    baseline = db.query(
        func.sum(ModelUsage.cost).label("total_cost"),
        func.sum(ModelUsage.total_tokens).label("total_tokens"),
        func.count().label("days")
    ).filter(
        ModelUsage.timestamp >= thirty_days_ago
    ).first()
    
    # Calculate daily averages
    actual_days = db.query(func.count(func.distinct(func.date(ModelUsage.timestamp))))\
        .filter(ModelUsage.timestamp >= thirty_days_ago)\
        .scalar() or 1  # Avoid division by zero
    
    daily_cost = float(baseline.total_cost or 0) / actual_days
    daily_tokens = int(baseline.total_tokens or 0) / actual_days
    
    # Project future costs
    result = {
        "nextMonth": daily_cost * 30,
        "next3Months": daily_cost * 90,
        "nextYear": daily_cost * 365,
        "tokensNextMonth": daily_tokens * 30,
        "dailyCost": daily_cost,
        "dailyTokens": daily_tokens,
        "baselineDays": actual_days
    }
    logger.log_message(f"Cost projections calculated: ${result['nextMonth']:.2f}/month, ${result['nextYear']:.2f}/year", logging.INFO)
    return result

@router.get("/costs/today")
async def get_today_costs(
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message("Today's costs requested", logging.INFO)
    today = datetime.utcnow().date()
    
    # Get today's costs
    today_data = db.query(
        func.sum(ModelUsage.cost).label("cost"),
        func.sum(ModelUsage.total_tokens).label("tokens"),
        func.count().label("requests")
    ).filter(
        func.date(ModelUsage.timestamp) == today
    ).first()
    
    result = {
        "date": today.strftime('%Y-%m-%d'),
        "cost": float(today_data.cost or 0),
        "tokens": int(today_data.tokens or 0),
        "requests": int(today_data.requests or 0)
    }
    logger.log_message(f"Today's costs retrieved: ${result['cost']:.2f}, {result['tokens']} tokens", logging.INFO)
    return result

# Debug endpoint for testing admin key
@router.get("/debug/model_usage")
async def debug_model_usage(api_key: str = Depends(verify_admin_api_key)):
    logger.log_message("Debug model usage endpoint accessed", logging.INFO)
    return {"status": "success", "message": "Admin API key validated successfully"}

# Function to broadcast real-time updates to all connected dashboard clients
async def broadcast_dashboard_update(update_data: Dict[str, Any]):
    if not active_dashboard_connections:
        return
    
    connection_count = len(active_dashboard_connections)
    logger.log_message(f"Broadcasting dashboard update to {connection_count} connections", logging.INFO)
    
    for connection in active_dashboard_connections.copy():
        try:
            await connection.send_text(json.dumps(update_data))
        except Exception as e:
            logger.log_message(f"Failed to send dashboard update: {str(e)}", logging.WARNING)
            active_dashboard_connections.remove(connection)

# Function to broadcast real-time updates to all connected user analytics clients
async def broadcast_user_update(update_data: Dict[str, Any]):
    if not active_user_connections:
        return
    
    connection_count = len(active_user_connections)
    logger.log_message(f"Broadcasting user update to {connection_count} connections", logging.INFO)
    
    for connection in active_user_connections.copy():
        try:
            await connection.send_text(json.dumps(update_data))
        except Exception as e:
            logger.log_message(f"Failed to send user update: {str(e)}", logging.WARNING)
            active_user_connections.remove(connection)

# Usage summary endpoint (to maintain backward compatibility)
@router.get("/usage/summary")
async def get_usage_summary(
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message("Usage summary requested (legacy endpoint)", logging.INFO)
    # Call the dashboard endpoint with default period
    return await get_dashboard_data(period="30d", db=db, api_key=api_key)

# Event handler for new ModelUsage entries
async def handle_new_model_usage(model_usage: ModelUsage):
    """
    Process a new model usage event and broadcast updates to connected clients.
    This function should be called whenever a new model usage record is created.
    """
    # Ensure the model_usage instance is refreshed and bound to a session
    session = get_session()  # Assuming get_session() is a function that provides a new session
    try:
        # Refresh the instance to ensure it's bound to the session
        session.refresh(model_usage)

        model_usage = session.merge(model_usage)  # Reattach to session
        session.refresh(model_usage)  # Refresh attributes
        logger.log_message(f"Processing new model usage event: {model_usage.model_name}, user: {model_usage.user_id}", level=logging.INFO)
        
        
        date_str = model_usage.timestamp.strftime('%Y-%m-%d') if model_usage.timestamp else None
        
        # Create dashboard update
        dashboard_update = {
            "type": "usage_update",
            "date": date_str,
            "metrics": {
                "tokens_delta": model_usage.total_tokens,
                "cost_delta": model_usage.cost,
                "requests_delta": 1
            }
        }
        # Create model update
        model_update = {
            "type": "model_update",
            "model_name": model_usage.model_name,
            "metrics": {
                "tokens": model_usage.total_tokens,
                "cost": model_usage.cost,
                "requests": 1
            }
        }
        
        if model_usage.user_id:
            user_update = {
                "type": "user_activity",
                "date": date_str,
                "metrics": {
                    "activeUsers": 1,  # This will be merged with existing data
                    "sessions": 1 if model_usage.chat_id else 0
                }
            }
            await broadcast_user_update(user_update)
        
        # Broadcast updates
        await broadcast_dashboard_update(dashboard_update)
        await broadcast_dashboard_update(model_update)
        logger.log_message("Model usage updates broadcasted successfully", logging.INFO)
    except Exception as e:
        logger.log_message(f"Error processing model usage event: {str(e)}", logging.ERROR)
    finally:
        session.close()  # Ensure the session is closed after use

@router.get("/tiers/usage")
async def get_tier_usage(
    period: str = "30d",
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"Tier usage requested for period: {period}", logging.INFO)
    start_date, end_date = get_date_range(period)
    
    # Get all model usage during the period
    model_query = db.query(
        ModelUsage.model_name,
        func.sum(ModelUsage.total_tokens).label("tokens"),
        func.count().label("requests"),
        func.sum(ModelUsage.cost).label("cost"),
        func.avg(ModelUsage.total_tokens).label("avg_tokens_per_query")
    ).filter(
        ModelUsage.timestamp >= start_date,
        ModelUsage.timestamp <= end_date
    ).group_by(
        ModelUsage.model_name
    ).all()
    
    # Initialize tier data
    tier_data = {
        tier_id: {
            "name": tier_info["name"],
            "credits": tier_info["credits"],
            "total_tokens": 0,
            "total_requests": 0,
            "total_cost": 0.0,
            "avg_tokens_per_query": 0,
            "cost_per_1k_tokens": 0.0,
            "models": []
        }
        for tier_id, tier_info in MODEL_TIERS.items()
    }
    
    # Aggregate data by tier
    for model in model_query:
        tier_id = get_model_tier(model.model_name)
        
        # Add model to the appropriate tier
        tier_data[tier_id]["models"].append({
            "name": model.model_name,
            "tokens": int(model.tokens or 0),
            "requests": int(model.requests or 0),
            "cost": float(model.cost or 0),
            "avg_tokens_per_query": float(model.avg_tokens_per_query or 0)
        })
        
        # Update tier totals
        tier_data[tier_id]["total_tokens"] += int(model.tokens or 0)
        tier_data[tier_id]["total_requests"] += int(model.requests or 0)
        tier_data[tier_id]["total_cost"] += float(model.cost or 0)
    
    # Calculate averages and costs per 1k tokens for each tier
    for tier_id, data in tier_data.items():
        if data["total_requests"] > 0:
            data["avg_tokens_per_query"] = data["total_tokens"] / data["total_requests"]
        
        if data["total_tokens"] > 0:
            data["cost_per_1k_tokens"] = (data["total_cost"] / data["total_tokens"]) * 1000
            
        # Calculate credit cost (what the user is paying in credits)
        data["total_credit_cost"] = data["total_requests"] * data["credits"]
        
        # Calculate effective cost per credit
        if data["total_credit_cost"] > 0:
            data["cost_per_credit"] = data["total_cost"] / data["total_credit_cost"]
        else:
            data["cost_per_credit"] = 0
    
    logger.log_message(f"Retrieved tier usage data for {len(tier_data)} tiers", logging.INFO)
    return {
        "tier_data": tier_data,
        "period": period,
        "start_date": start_date.strftime('%Y-%m-%d'),
        "end_date": end_date.strftime('%Y-%m-%d')
    }

@router.get("/tiers/projections")
async def get_tier_projections(
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message("Tier projections requested", logging.INFO)
    # Get last 30 days usage for baseline
    tier_usage = await get_tier_usage(period="30d", db=db, api_key=api_key)
    tier_data = tier_usage["tier_data"]
    
    # Calculate daily averages by tier
    daily_tier_usage = {
        tier_id: {
            "name": data["name"],
            "daily_requests": data["total_requests"] / 30,
            "daily_tokens": data["total_tokens"] / 30,
            "daily_cost": data["total_cost"] / 30,
            "daily_credits": data["total_credit_cost"] / 30
        }
        for tier_id, data in tier_data.items()
    }
    
    # Calculate projections
    projections = {
        "monthly": {
            "requests": {},
            "tokens": {},
            "cost": {},
            "credits": {}
        },
        "quarterly": {
            "requests": {},
            "tokens": {},
            "cost": {},
            "credits": {}
        },
        "yearly": {
            "requests": {},
            "tokens": {},
            "cost": {},
            "credits": {}
        }
    }
    
    # Calculate for each tier
    for tier_id, data in daily_tier_usage.items():
        # Monthly projections (30 days)
        projections["monthly"]["requests"][tier_id] = data["daily_requests"] * 30
        projections["monthly"]["tokens"][tier_id] = data["daily_tokens"] * 30
        projections["monthly"]["cost"][tier_id] = data["daily_cost"] * 30
        projections["monthly"]["credits"][tier_id] = data["daily_credits"] * 30
        
        # Quarterly projections (90 days)
        projections["quarterly"]["requests"][tier_id] = data["daily_requests"] * 90
        projections["quarterly"]["tokens"][tier_id] = data["daily_tokens"] * 90
        projections["quarterly"]["cost"][tier_id] = data["daily_cost"] * 90
        projections["quarterly"]["credits"][tier_id] = data["daily_credits"] * 90
        
        # Yearly projections (365 days)
        projections["yearly"]["requests"][tier_id] = data["daily_requests"] * 365
        projections["yearly"]["tokens"][tier_id] = data["daily_tokens"] * 365
        projections["yearly"]["cost"][tier_id] = data["daily_cost"] * 365
        projections["yearly"]["credits"][tier_id] = data["daily_credits"] * 365
    
    # Add totals for each projection period
    for period in ["monthly", "quarterly", "yearly"]:
        for metric in ["requests", "tokens", "cost", "credits"]:
            projections[period][f"total_{metric}"] = sum(projections[period][metric].values())
    
    logger.log_message(f"Tier projections calculated for {len(daily_tier_usage)} tiers", logging.INFO)
    return {
        "daily_usage": daily_tier_usage,
        "projections": projections,
        "tier_definitions": MODEL_TIERS
    }

@router.get("/tiers/efficiency")
async def get_tier_efficiency(
    period: str = "30d",
    db: Session = Depends(get_db),
    api_key: str = Depends(verify_admin_api_key)
):
    logger.log_message(f"Tier efficiency requested for period: {period}", logging.INFO)
    # Get tier usage data
    tier_usage = await get_tier_usage(period=period, db=db, api_key=api_key)
    tier_data = tier_usage["tier_data"]
    
    # Calculate efficiency metrics
    efficiency_data = {}
    
    for tier_id, data in tier_data.items():
        tokens_per_credit = data["total_tokens"] / data["total_credit_cost"] if data["total_credit_cost"] > 0 else 0
        cost_per_credit = data["total_cost"] / data["total_credit_cost"] if data["total_credit_cost"] > 0 else 0
        
        efficiency_data[tier_id] = {
            "name": data["name"],
            "tokens_per_credit": tokens_per_credit,
            "cost_per_credit": cost_per_credit,
            "credit_cost": data["credits"],
            "cost_per_1k_tokens": data["cost_per_1k_tokens"],
            "avg_tokens_per_query": data["avg_tokens_per_query"],
            "total_requests": data["total_requests"],
            "total_tokens": data["total_tokens"],
            "total_cost": data["total_cost"]
        }
    
    # Determine most efficient tier based on tokens per credit
    most_efficient_tier = max(
        efficiency_data.items(),
        key=lambda x: x[1]["tokens_per_credit"] if x[1]["tokens_per_credit"] > 0 else 0,
        default=(None, {})
    )[0]
    
    # Determine best value tier based on cost per credit
    best_value_tier = min(
        efficiency_data.items(),
        key=lambda x: x[1]["cost_per_credit"] if x[1]["cost_per_credit"] > 0 else float('inf'),
        default=(None, {})
    )[0]
    
    logger.log_message(f"Tier efficiency calculated for {len(efficiency_data)} tiers", logging.INFO)
    return {
        "efficiency_data": efficiency_data,
        "most_efficient_tier": most_efficient_tier,
        "best_value_tier": best_value_tier,
        "period": period,
        "start_date": tier_usage["start_date"],
        "end_date": tier_usage["end_date"]
    }