File size: 17,414 Bytes
d32c69c
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a833a
 
 
d32c69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a833a
d32c69c
e9a833a
 
 
 
 
d32c69c
 
 
e9a833a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32c69c
 
e9a833a
d32c69c
 
 
 
 
 
 
e9a833a
 
d32c69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a833a
d32c69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a833a
 
d32c69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a833a
d32c69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a833a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import io
import os
import time
import uuid
import logging
import pandas as pd
from typing import Dict, Any, List, Optional

from llama_index.core import Document, VectorStoreIndex
from src.utils.logger import Logger
from src.managers.user_manager import create_user, get_current_user
from src.agents.agents import auto_analyst, auto_analyst_ind
from src.agents.retrievers.retrievers import make_data
from src.managers.chat_manager import ChatManager
from dotenv import load_dotenv

load_dotenv()

# Initialize logger
logger = Logger("session_manager", see_time=False, console_log=False)

class SessionManager:
    """
    Manages session-specific state, including datasets, retrievers, and AI systems.
    Handles creation, retrieval, and updating of sessions.
    """
    
    def __init__(self, styling_instructions: List[str], available_agents: Dict):
        """
        Initialize session manager with styling instructions and agents
        
        Args:
            styling_instructions: List of styling instructions
            available_agents: Dictionary of available agents
        """
        self._sessions = {}
        self._default_df = None
        self._default_retrievers = None
        self._default_ai_system = None
        self._dataset_description = None
        self._make_data = None
        self._default_name = "Housing Dataset"  # Default dataset name
        
        self._dataset_description = """This dataset contains residential property information with details about pricing, physical characteristics, and amenities. The data can be used for real estate market analysis, property valuation, and understanding the relationship between house features and prices.

Key Features:
- Property prices range from 1.75M to 13.3M (currency units)
- Living areas from 1,650 to 16,200 (square units)
- Properties vary from 1-6 bedrooms and 1-4 bathrooms
- Various amenities tracked including parking, air conditioning, and hot water heating

TECHNICAL CONSIDERATIONS FOR ANALYSIS:

Numeric Columns:
- price (int): Large values suggesting currency units; range 1.75M-13.3M
- area (int): Square units measurement; range 1,650-16,200
- bedrooms (int): Discrete values 1-6
- bathrooms (int): Discrete values 1-4
- stories (int): Discrete values 1-4
- parking (int): Discrete values 0-3

Binary Categorical Columns (stored as str):
- mainroad (str): 'yes'/'no' - Consider boolean conversion
- guestroom (str): 'yes'/'no' - Consider boolean conversion
- basement (str): 'yes'/'no' - Consider boolean conversion
- hotwaterheating (str): 'yes'/'no' - Consider boolean conversion
- airconditioning (str): 'yes'/'no' - Consider boolean conversion
- prefarea (str): 'yes'/'no' - Consider boolean conversion

Other Categorical:
- furnishingstatus (str): Categories include 'furnished', 'semi-furnished' - Consider one-hot encoding

Data Handling Recommendations:
1. Binary variables should be converted to boolean or numeric (0/1) for analysis
2. Consider normalizing price and area values for certain analyses
3. Furnishing status will need categorical encoding for numerical analysis
4. No null values detected in the dataset
5. All numeric columns are properly typed as numbers (no string conversion needed)
6. Consider treating bedrooms, bathrooms, stories, and parking as categorical despite numeric storage

This dataset appears clean with consistent formatting and no missing values, making it suitable for immediate analysis with appropriate categorical encoding.
        """
        self.styling_instructions = styling_instructions
        self.available_agents = available_agents
        self.chat_manager = ChatManager(db_url=os.getenv("DATABASE_URL"))
        
        self.initialize_default_dataset()
    
    def initialize_default_dataset(self):
        """Initialize the default dataset and store it"""
        try:
            self._default_df = pd.read_csv("Housing.csv")
            self._make_data = make_data(self._default_df, self._dataset_description)
            self._default_retrievers = self.initialize_retrievers(self.styling_instructions, [str(self._make_data)])
            self._default_ai_system = auto_analyst(agents=list(self.available_agents.values()), 
                                                  retrievers=self._default_retrievers)
        except Exception as e:
            logger.log_message(f"Error initializing default dataset: {str(e)}", level=logging.ERROR)
            raise e
    
    def initialize_retrievers(self, styling_instructions: List[str], doc: List[str]):
        """
        Initialize retrievers for styling and data
        
        Args:
            styling_instructions: List of styling instructions
            doc: List of document strings
            
        Returns:
            Dictionary containing style_index and dataframe_index
        """
        try:
            style_index = VectorStoreIndex.from_documents([Document(text=x) for x in styling_instructions])
            data_index = VectorStoreIndex.from_documents([Document(text=x) for x in doc])
            return {"style_index": style_index, "dataframe_index": data_index}
        except Exception as e:
            logger.log_message(f"Error initializing retrievers: {str(e)}", level=logging.ERROR)
            raise e

    def get_session_state(self, session_id: str) -> Dict[str, Any]:
        """
        Get or create session-specific state
        
        Args:
            session_id: The session identifier
            
        Returns:
            Dictionary containing session state
        """
        # Use the global model config from app_state when available
        # Get the most up-to-date model config
        if hasattr(self, '_app_model_config') and self._app_model_config:
            default_model_config = self._app_model_config
        else:
            default_model_config = {
                "provider": os.getenv("MODEL_PROVIDER", "openai"),
                "model": os.getenv("MODEL_NAME", "gpt-4o-mini"),
                "api_key": os.getenv("OPENAI_API_KEY"),
                "temperature": float(os.getenv("TEMPERATURE", 1.0)),
                "max_tokens": int(os.getenv("MAX_TOKENS", 6000))
            }
        
        if session_id not in self._sessions:
            # Check if we need to create a brand new session
            logger.log_message(f"Creating new session state for session_id: {session_id}", level=logging.INFO)
            
            # Initialize with default state
            self._sessions[session_id] = {
                "current_df": self._default_df.copy() if self._default_df is not None else None,
                "retrievers": self._default_retrievers,
                "ai_system": self._default_ai_system,
                "make_data": self._make_data,
                "description": self._dataset_description,
                "name": self._default_name,
                "model_config": default_model_config,
                "creation_time": time.time()
            }
        else:
            # Verify dataset integrity in existing session
            session = self._sessions[session_id]
            
            # Always update model_config to match global settings
            session["model_config"] = default_model_config
            
            # If dataset is somehow missing, restore it
            if "current_df" not in session or session["current_df"] is None:
                logger.log_message(f"Restoring missing dataset for session {session_id}", level=logging.WARNING)
                session["current_df"] = self._default_df.copy() if self._default_df is not None else None
                session["retrievers"] = self._default_retrievers
                session["ai_system"] = self._default_ai_system
                session["description"] = self._dataset_description
                session["name"] = self._default_name
            
            # Ensure we have the basic required fields
            if "name" not in session:
                session["name"] = self._default_name
            if "description" not in session:
                session["description"] = self._dataset_description
            
            # Update last accessed time
            session["last_accessed"] = time.time()
            
        return self._sessions[session_id]

    def clear_session_state(self, session_id: str):
        """
        Clear session-specific state
        
        Args:
            session_id: The session identifier
        """
        if session_id in self._sessions:
            del self._sessions[session_id]


    def update_session_dataset(self, session_id: str, df, name: str, desc: str):
        """
        Update dataset for a specific session

        Args:
            session_id: The session identifier
            df: Pandas DataFrame containing the dataset
            name: Name of the dataset
            desc: Description of the dataset
        """
        try:
            self._make_data = make_data(df, desc)
            retrievers = self.initialize_retrievers(self.styling_instructions, [str(self._make_data)])
            ai_system = auto_analyst(agents=list(self.available_agents.values()), retrievers=retrievers)
            
            # Get default model config for new sessions
            default_model_config = {
                "provider": os.getenv("MODEL_PROVIDER", "openai"),
                "model": os.getenv("MODEL_NAME", "gpt-4o-mini"),
                "api_key": os.getenv("OPENAI_API_KEY"),
                "temperature": float(os.getenv("TEMPERATURE", 1.0)),
                "max_tokens": int(os.getenv("MAX_TOKENS", 6000))
            }
            
            # Create a completely fresh session state for the new dataset
            # This ensures no remnants of the previous dataset remain
            session_state = {
                "current_df": df,
                "retrievers": retrievers,
                "ai_system": ai_system,
                "make_data": self._make_data,
                "description": desc,
                "name": name,
                "model_config": default_model_config,  # Initialize with default
            }
            
            # Preserve user_id, chat_id, and model_config if they exist in the current session
            if session_id in self._sessions:
                if "user_id" in self._sessions[session_id]:
                    session_state["user_id"] = self._sessions[session_id]["user_id"]
                if "chat_id" in self._sessions[session_id]:
                    session_state["chat_id"] = self._sessions[session_id]["chat_id"]
                if "model_config" in self._sessions[session_id]:
                    # Preserve the user's model configuration
                    session_state["model_config"] = self._sessions[session_id]["model_config"]
            
            # Replace the entire session with the new state
            self._sessions[session_id] = session_state
            
            logger.log_message(f"Updated session {session_id} with completely fresh dataset state: {name}", level=logging.INFO)
        except Exception as e:
            logger.log_message(f"Error updating dataset for session {session_id}: {str(e)}", level=logging.ERROR)
            raise e

    def reset_session_to_default(self, session_id: str):
        """
        Reset a session to use the default dataset

        Args:
            session_id: The session identifier
        """
        try:
            # Get default model config from environment
            default_model_config = {
                "provider": os.getenv("MODEL_PROVIDER", "openai"),
                "model": os.getenv("MODEL_NAME", "gpt-4o-mini"),
                "api_key": os.getenv("OPENAI_API_KEY"),
                "temperature": float(os.getenv("TEMPERATURE", 1.0)),
                "max_tokens": int(os.getenv("MAX_TOKENS", 6000))
            }
            
            # Clear any custom data associated with the session first
            if session_id in self._sessions:
                del self._sessions[session_id]
                logger.log_message(f"Cleared existing state for session {session_id} before reset.", level=logging.INFO)

            # Initialize with default state
            self._sessions[session_id] = {
                "current_df": self._default_df.copy(), # Use a copy
                "retrievers": self._default_retrievers,
                "ai_system": self._default_ai_system,
                "description": self._dataset_description,
                "name": self._default_name, # Explicitly set the default name
                "make_data": None, # Clear any custom make_data
                "model_config": default_model_config # Initialize with default model config
            }
            logger.log_message(f"Reset session {session_id} to default dataset: {self._default_name}", level=logging.INFO)
        except Exception as e:
            logger.log_message(f"Error resetting session {session_id}: {str(e)}", level=logging.ERROR)
            raise e


    def set_session_user(self, session_id: str, user_id: int, chat_id: int = None):
        """
        Associate a user with a session
        
        Args:
            session_id: The session identifier
            user_id: The authenticated user ID
            chat_id: Optional chat ID for tracking conversation
            
        Returns:
            Updated session state dictionary
        """
        # Ensure we have a session state for this session ID
        if session_id not in self._sessions:
            self.get_session_state(session_id)  # Initialize with defaults
        
        # Store user ID
        self._sessions[session_id]["user_id"] = user_id
        
        # Generate or use chat ID
        if chat_id:
            chat_id_to_use = chat_id
        else:
            # Check if chat_id already exists
            if "chat_id" not in self._sessions[session_id] or not self._sessions[session_id]["chat_id"]:
                # Use current timestamp + random number to generate a more readable ID
                import random
                chat_id_to_use = int(time.time() * 1000) % 1000000 + random.randint(1, 999)
            else:
                chat_id_to_use = self._sessions[session_id]["chat_id"]
        
        # Store chat ID
        self._sessions[session_id]["chat_id"] = chat_id_to_use
        
        # Make sure this data gets saved
        logger.log_message(f"Associated session {session_id} with user_id={user_id}, chat_id={chat_id_to_use}", level=logging.INFO)
        
        # Return the updated session data
        return self._sessions[session_id]

async def get_session_id(request, session_manager):
    """
    Get the session ID from the request, create/associate a user if needed
    
    Args:
        request: FastAPI Request object
        session_manager: SessionManager instance
        
    Returns:
        Session ID string
    """
    # First try to get from query params
    session_id = request.query_params.get("session_id")
    
    # If not in query params, try to get from headers
    if not session_id:
        session_id = request.headers.get("X-Session-ID")
    
    # If still not found, generate a new one
    if not session_id:
        session_id = str(uuid.uuid4())
    
    # Get or create the session state
    session_state = session_manager.get_session_state(session_id)
    
    # First, check if we already have a user associated with this session
    if session_state.get("user_id") is not None:
        return session_id
    
    # Next, try to get authenticated user using the API key
    current_user = await get_current_user(request)
    if current_user:
        # Use the authenticated user instead of creating a guest
        session_manager.set_session_user(
            session_id=session_id,
            user_id=current_user.user_id
        )
        logger.log_message(f"Associated session {session_id} with authenticated user_id {current_user.user_id}", level=logging.INFO)
        return session_id
    
    # Check if a user_id was provided in the request params
    user_id_param = request.query_params.get("user_id")
    if user_id_param:
        try:
            user_id = int(user_id_param)
            session_manager.set_session_user(session_id=session_id, user_id=user_id)
            logger.log_message(f"Associated session {session_id} with provided user_id {user_id}", level=logging.INFO)
            return session_id
        except (ValueError, TypeError):
            logger.log_message(f"Invalid user_id in query params: {user_id_param}", level=logging.WARNING)
    
    # Only create a guest user if no authenticated user is found
    try:
        # Create a guest user for this session
        guest_username = f"guest_{session_id[:8]}"
        guest_email = f"{guest_username}@example.com"
        
        # Create the user
        user = create_user(username=guest_username, email=guest_email)
        user_id = user.user_id
        
        logger.log_message(f"Created guest user {user_id} for session {session_id}", level=logging.INFO)
        
        # Associate the user with this session
        session_manager.set_session_user(
            session_id=session_id,
            user_id=user_id
        )
    except Exception as e:
        logger.log_message(f"Error auto-creating user for session {session_id}: {str(e)}", level=logging.ERROR)
    
    return session_id