Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 31,197 Bytes
4d16728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
from sqlalchemy import create_engine, desc, func, exists
from sqlalchemy.orm import sessionmaker, scoped_session
from sqlalchemy.exc import SQLAlchemyError
from src.db.schemas.models import Base, User, Chat, Message, ModelUsage
import logging
import requests
import json
from typing import List, Dict, Optional, Tuple, Any
from datetime import datetime
import time
import tiktoken
from src.utils.logger import Logger
import re
logger = Logger("chat_manager", see_time=True, console_log=False)
class ChatManager:
"""
Manages chat operations including creating, storing, retrieving, and updating chats and messages.
Provides an interface between the application and the database for chat-related operations.
"""
def __init__(self, db_url):
"""
Initialize the ChatManager with a database connection.
Args:
db_url: Database connection URL (defaults to SQLite)
"""
self.engine = create_engine(db_url)
Base.metadata.create_all(self.engine) # Ensure tables exist
self.Session = scoped_session(sessionmaker(bind=self.engine))
# Add price mappings for different models
self.model_costs = {
"openai": {
"gpt-4": {"input": 0.03, "output": 0.06},
"gpt-4o": {"input": 0.0025, "output": 0.01},
"gpt-4.5-preview": {"input": 0.075, "output": 0.15},
"gpt-4o-mini": {"input": 0.00015, "output": 0.0006},
"gpt-3.5-turbo": {"input": 0.0005, "output": 0.0015},
"o1": {"input": 0.015, "output": 0.06},
"o1-mini": {"input": 0.00011, "output": 0.00044},
"o3-mini": {"input": 0.00011, "output": 0.00044}
},
"anthropic": {
"claude-3-opus-latest": {"input": 0.015, "output": 0.075},
"claude-3-7-sonnet-latest": {"input": 0.003, "output": 0.015},
"claude-3-5-sonnet-latest": {"input": 0.003, "output": 0.015},
"claude-3-5-haiku-latest": {"input": 0.0008, "output": 0.0004},
},
"groq": {
"deepseek-r1-distill-llama-70b": {"input": 0.00075, "output": 0.00099},
"llama-3.3-70b-versatile": {"input": 0.00059, "output": 0.00079},
"llama3-8b-8192": {"input": 0.00005, "output": 0.00008},
"llama3-70b-8192": {"input": 0.00059, "output": 0.00079},
"llama-3.1-8b-instant": {"input": 0.00005, "output": 0.00008},
"mistral-saba-24b": {"input": 0.00079, "output": 0.00079},
"gemma2-9b-it": {"input": 0.0002, "output": 0.0002},
"qwen-qwq-32b": {"input": 0.00029, "output": 0.00039},
"meta-llama/llama-4-maverick-17b-128e-instruct": {"input": 0.0002, "output": 0.0006},
"meta-llama/llama-4-scout-17b-16e-instruct": {"input": 0.00011, "output": 0.00034},
},
"gemini": {
"gemini-2.5-pro-preview-03-25": {"input": 0.00015, "output": 0.001}
}
}
# Add model providers mapping
self.model_providers = {
"gpt-": "openai",
"claude-": "anthropic",
"llama-": "groq",
"mistral-": "groq",
}
def create_chat(self, user_id: Optional[int] = None) -> Dict[str, Any]:
"""
Create a new chat session.
Args:
user_id: Optional user ID if authentication is enabled
Returns:
Dictionary containing chat information
"""
session = self.Session()
try:
# Create a new chat
chat = Chat(
user_id=user_id,
title='New Chat',
created_at=datetime.utcnow()
)
session.add(chat)
session.flush() # Flush to get the ID before commit
chat_id = chat.chat_id # Get the ID now
session.commit()
logger.log_message(f"Created new chat {chat_id} for user {user_id}", level=logging.INFO)
return {
"chat_id": chat_id,
"user_id": chat.user_id,
"title": chat.title,
"created_at": chat.created_at.isoformat()
}
except SQLAlchemyError as e:
session.rollback()
logger.log_message(f"Error creating chat: {str(e)}", level=logging.ERROR)
raise
finally:
session.close()
def add_message(self, chat_id: int, content: str, sender: str, user_id: Optional[int] = None) -> Dict[str, Any]:
"""
Add a message to a chat.
Args:
chat_id: ID of the chat to add the message to
content: Message content
sender: Message sender ('user' or 'ai')
user_id: Optional user ID to verify ownership
Returns:
Dictionary containing message information
"""
session = self.Session()
try:
# Check if chat exists and belongs to the user if user_id is provided
query = session.query(Chat).filter(Chat.chat_id == chat_id)
if user_id is not None:
query = query.filter((Chat.user_id == user_id) | (Chat.user_id.is_(None)))
chat = query.first()
if not chat:
raise ValueError(f"Chat with ID {chat_id} not found or access denied")
##! Ensure content length is reasonable for PostgreSQL
# max_content_length = 10000 # PostgreSQL can handle large text but let's be cautious
# if content and len(content) > max_content_length:
# logger.log_message(f"Truncating message content from {len(content)} to {max_content_length} characters",
# level=logging.WARNING)
# content = content[:max_content_length]
# Create a new message
message = Message(
chat_id=chat_id,
content=content,
sender=sender,
timestamp=datetime.utcnow()
)
session.add(message)
session.flush() # Flush to get the ID before commit
message_id = message.message_id # Get ID now
# If this is the first AI response and chat title is still default,
# update the chat title based on the first user query
if sender == 'ai':
first_ai_message = session.query(Message).filter(
Message.chat_id == chat_id,
Message.sender == 'ai'
).first()
if not first_ai_message and chat.title == 'New Chat':
# Get the user's first message
first_user_message = session.query(Message).filter(
Message.chat_id == chat_id,
Message.sender == 'user'
).order_by(Message.timestamp).first()
if first_user_message:
# Generate title from user query
new_title = self.generate_title_from_query(first_user_message.content)
chat.title = new_title
session.commit()
return {
"message_id": message_id,
"chat_id": message.chat_id,
"content": message.content,
"sender": message.sender,
"timestamp": message.timestamp.isoformat()
}
except SQLAlchemyError as e:
session.rollback()
logger.log_message(f"Error adding message: {str(e)}", level=logging.ERROR)
raise
finally:
session.close()
def get_chat(self, chat_id: int, user_id: Optional[int] = None) -> Dict[str, Any]:
"""
Get a chat by ID with all its messages.
Args:
chat_id: ID of the chat to retrieve
user_id: Optional user ID to verify ownership
Returns:
Dictionary containing chat information and messages
"""
session = self.Session()
try:
# Get the chat
query = session.query(Chat).filter(Chat.chat_id == chat_id)
# If user_id is provided, ensure the chat belongs to this user
if user_id is not None:
query = query.filter((Chat.user_id == user_id) | (Chat.user_id.is_(None)))
chat = query.first()
if not chat:
raise ValueError(f"Chat with ID {chat_id} not found or access denied")
# Get the chat messages ordered by timestamp
messages = session.query(Message).filter(
Message.chat_id == chat_id
).order_by(Message.timestamp).all()
# Create a safe serializable dictionary
return {
"chat_id": chat.chat_id,
"title": chat.title,
"created_at": chat.created_at.isoformat() if chat.created_at else None,
"user_id": chat.user_id,
"messages": [
{
"message_id": msg.message_id,
"chat_id": msg.chat_id,
"content": msg.content,
"sender": msg.sender,
"timestamp": msg.timestamp.isoformat() if msg.timestamp else None
} for msg in messages
]
}
except SQLAlchemyError as e:
logger.log_message(f"Error retrieving chat: {str(e)}", level=logging.ERROR)
raise
finally:
session.close()
def get_user_chats(self, user_id: Optional[int] = None, limit: int = 10, offset: int = 0) -> List[Dict[str, Any]]:
"""
Get recent chats for a user, or all chats if no user_id is provided.
Args:
user_id: Optional user ID to filter chats
limit: Maximum number of chats to return
offset: Number of chats to skip (for pagination)
Returns:
List of dictionaries containing chat information
"""
session = self.Session()
try:
query = session.query(Chat)
# Filter by user_id if provided
if user_id is not None:
query = query.filter(Chat.user_id == user_id)
# Apply safe limits for both SQLite and PostgreSQL
safe_limit = min(max(1, limit), 100) # Between 1 and 100
safe_offset = max(0, offset) # At least 0
chats = query.order_by(Chat.created_at.desc()).limit(safe_limit).offset(safe_offset).all()
return [
{
"chat_id": chat.chat_id,
"user_id": chat.user_id,
"title": chat.title,
"created_at": chat.created_at.isoformat() if chat.created_at else None
} for chat in chats
]
except SQLAlchemyError as e:
logger.log_message(f"Error retrieving chats: {str(e)}", level=logging.ERROR)
return []
finally:
session.close()
def delete_chat(self, chat_id: int, user_id: Optional[int] = None) -> bool:
"""
Delete a chat and all its messages while preserving model usage records.
Args:
chat_id: ID of the chat to delete
user_id: Optional user ID to verify ownership
Returns:
True if deletion was successful, False otherwise
"""
session = self.Session()
try:
# Fetch chat with ownership check if user_id provided
query = session.query(Chat).filter(Chat.chat_id == chat_id)
if user_id is not None:
query = query.filter(Chat.user_id == user_id)
chat = query.first()
if not chat:
return False # Chat not found or ownership mismatch
# ORM-based deletion with model_usage preservation
# The SET NULL in the foreign key should handle this, but we ensure it explicitly for both
# SQLite and PostgreSQL compatibility
# For SQLite which might not respect ondelete="SET NULL" always:
# Update model_usage records to set chat_id to NULL
session.query(ModelUsage).filter(ModelUsage.chat_id == chat_id).update(
{"chat_id": None}, synchronize_session=False
)
# Now delete the chat - relationships will handle cascading to messages
session.delete(chat)
session.commit()
return True
except SQLAlchemyError as e:
session.rollback()
logger.log_message(f"Error deleting chat: {str(e)}", level=logging.ERROR)
return False
finally:
session.close()
def get_or_create_user(self, username: str, email: str) -> Dict[str, Any]:
"""
Get an existing user by email or create a new one if not found.
Args:
username: User's display name
email: User's email address
Returns:
Dictionary containing user information
"""
session = self.Session()
try:
# Validate and sanitize inputs
if not email or not isinstance(email, str):
raise ValueError("Valid email is required")
# Limit input length for PostgreSQL compatibility
max_length = 255 # Standard limit for varchar fields
if username and len(username) > max_length:
username = username[:max_length]
if email and len(email) > max_length:
email = email[:max_length]
# Try to find existing user by email
user = session.query(User).filter(User.email == email).first()
if not user:
# Create new user if not found
user = User(username=username, email=email)
session.add(user)
session.flush() # Get ID before committing
user_id = user.user_id
session.commit()
logger.log_message(f"Created new user: {username} ({email})", level=logging.INFO)
else:
user_id = user.user_id
return {
"user_id": user_id,
"username": user.username,
"email": user.email,
"created_at": user.created_at.isoformat() if user.created_at else None
}
except SQLAlchemyError as e:
session.rollback()
logger.log_message(f"Error getting/creating user: {str(e)}", level=logging.ERROR)
raise
finally:
session.close()
def update_chat(self, chat_id: int, title: Optional[str] = None, user_id: Optional[int] = None) -> Dict[str, Any]:
"""
Update a chat's title or user_id.
Args:
chat_id: ID of the chat to update
title: New title for the chat (optional)
user_id: New user ID for the chat (optional)
Returns:
Dictionary containing updated chat information
"""
session = self.Session()
try:
# Get the chat
chat = session.query(Chat).filter(Chat.chat_id == chat_id).first()
if not chat:
raise ValueError(f"Chat with ID {chat_id} not found")
# Update fields if provided
if title is not None:
# Limit title length for PostgreSQL compatibility
if len(title) > 255: # Assuming String column has a reasonable length
title = title[:255]
chat.title = title
if user_id is not None:
chat.user_id = user_id
session.commit()
return {
"chat_id": chat.chat_id,
"title": chat.title,
"created_at": chat.created_at.isoformat() if chat.created_at else None,
"user_id": chat.user_id
}
except SQLAlchemyError as e:
session.rollback()
logger.log_message(f"Error updating chat: {str(e)}", level=logging.ERROR)
raise
finally:
session.close()
def generate_title_from_query(self, query: str) -> str:
"""
Generate a title for a chat based on the first query.
Args:
query: The user's first query in the chat
Returns:
A generated title string
"""
try:
# Validate input
if not query or not isinstance(query, str):
return "New Chat"
# Simple title generation - take first few words
words = query.strip().split()
if len(words) > 3:
title = "Chat about " + " ".join(words[0:3]) + "..."
else:
title = "Chat about " + query.strip()
# Limit title length for PostgreSQL compatibility
max_title_length = 255
if len(title) > max_title_length:
title = title[:max_title_length-3] + "..."
return title
except Exception as e:
logger.log_message(f"Error generating title: {str(e)}", level=logging.ERROR)
return "New Chat"
def delete_empty_chats(self, user_id: Optional[int] = None, is_admin: bool = False) -> int:
"""
Delete empty chats (chats with no messages) for a user.
Args:
user_id: ID of the user whose empty chats should be deleted
is_admin: Whether this is an admin user
Returns:
Number of chats deleted
"""
session = self.Session()
try:
# Get all chats for the user
query = session.query(Chat)
if user_id is not None:
query = query.filter(Chat.user_id == user_id)
elif not is_admin:
return 0 # Don't delete anything if not a user or admin
# Get chats with no messages using a subquery - works in both SQLite and PostgreSQL
empty_chats = query.filter(
~exists().where(Message.chat_id == Chat.chat_id)
).all()
# Collect chat IDs to delete
chat_ids = [chat.chat_id for chat in empty_chats]
deleted_count = 0
if chat_ids:
# Update model_usage records to set chat_id to NULL for any associated usage records
session.query(ModelUsage).filter(ModelUsage.chat_id.in_(chat_ids)).update(
{"chat_id": None}, synchronize_session=False
)
# Delete the empty chats one by one to ensure proper relationship handling
for chat_id in chat_ids:
chat = session.query(Chat).filter(Chat.chat_id == chat_id).first()
if chat:
session.delete(chat)
deleted_count += 1
session.commit()
return deleted_count
except SQLAlchemyError as e:
session.rollback()
logger.log_message(f"Error deleting empty chats: {str(e)}", level=logging.ERROR)
return 0
finally:
session.close()
def get_usage_summary(self, start_date: Optional[datetime] = None,
end_date: Optional[datetime] = None) -> Dict[str, Any]:
"""
Get a summary of model usage including total costs, tokens, and usage by model.
Args:
start_date: Optional start date for the summary period
end_date: Optional end date for the summary period
Returns:
Dictionary containing usage summary
"""
session = self.Session()
try:
# Build base query - convert None values to default values for compatibility
base_query = session.query(ModelUsage)
# Apply date filters
if start_date:
base_query = base_query.filter(ModelUsage.timestamp >= start_date)
if end_date:
base_query = base_query.filter(ModelUsage.timestamp <= end_date)
# Get summary data using aggregate functions
summary_query = session.query(
func.coalesce(func.sum(ModelUsage.cost), 0.0).label("total_cost"),
func.coalesce(func.sum(ModelUsage.prompt_tokens), 0).label("total_prompt_tokens"),
func.coalesce(func.sum(ModelUsage.completion_tokens), 0).label("total_completion_tokens"),
func.coalesce(func.sum(ModelUsage.total_tokens), 0).label("total_tokens"),
func.count(ModelUsage.usage_id).label("request_count"),
func.coalesce(func.avg(ModelUsage.request_time_ms), 0.0).label("avg_request_time")
).select_from(base_query.subquery())
result = summary_query.first()
# Get usage breakdown by model - using the same base query for consistency
model_query = session.query(
ModelUsage.model_name,
func.coalesce(func.sum(ModelUsage.cost), 0.0).label("model_cost"),
func.coalesce(func.sum(ModelUsage.total_tokens), 0).label("model_tokens"),
func.count(ModelUsage.usage_id).label("model_requests")
).select_from(base_query.subquery()).group_by(ModelUsage.model_name)
model_breakdown = model_query.all()
# Get usage breakdown by provider using the same base query
provider_query = session.query(
ModelUsage.provider,
func.coalesce(func.sum(ModelUsage.cost), 0.0).label("provider_cost"),
func.coalesce(func.sum(ModelUsage.total_tokens), 0).label("provider_tokens"),
func.count(ModelUsage.usage_id).label("provider_requests")
).select_from(base_query.subquery()).group_by(ModelUsage.provider)
provider_breakdown = provider_query.all()
# Get top users by cost
user_query = session.query(
ModelUsage.user_id,
func.coalesce(func.sum(ModelUsage.cost), 0.0).label("user_cost"),
func.coalesce(func.sum(ModelUsage.total_tokens), 0).label("user_tokens"),
func.count(ModelUsage.usage_id).label("user_requests")
).select_from(base_query.subquery()).group_by(ModelUsage.user_id).order_by(
func.sum(ModelUsage.cost).desc()
).limit(10)
user_breakdown = user_query.all()
# Handle the result data carefully to avoid None/NULL issues
return {
"summary": {
"total_cost": float(result.total_cost) if result and result.total_cost is not None else 0.0,
"total_prompt_tokens": int(result.total_prompt_tokens) if result and result.total_prompt_tokens is not None else 0,
"total_completion_tokens": int(result.total_completion_tokens) if result and result.total_completion_tokens is not None else 0,
"total_tokens": int(result.total_tokens) if result and result.total_tokens is not None else 0,
"request_count": int(result.request_count) if result and result.request_count is not None else 0,
"avg_request_time_ms": float(result.avg_request_time) if result and result.avg_request_time is not None else 0.0
},
"model_breakdown": [
{
"model_name": model.model_name,
"cost": float(model.model_cost) if model.model_cost is not None else 0.0,
"tokens": int(model.model_tokens) if model.model_tokens is not None else 0,
"requests": int(model.model_requests) if model.model_requests is not None else 0
} for model in model_breakdown
],
"provider_breakdown": [
{
"provider": provider.provider,
"cost": float(provider.provider_cost) if provider.provider_cost is not None else 0.0,
"tokens": int(provider.provider_tokens) if provider.provider_tokens is not None else 0,
"requests": int(provider.provider_requests) if provider.provider_requests is not None else 0
} for provider in provider_breakdown
],
"top_users": [
{
"user_id": user.user_id,
"cost": float(user.user_cost) if user.user_cost is not None else 0.0,
"tokens": int(user.user_tokens) if user.user_tokens is not None else 0,
"requests": int(user.user_requests) if user.user_requests is not None else 0
} for user in user_breakdown
]
}
except SQLAlchemyError as e:
logger.log_message(f"Error retrieving usage summary: {str(e)}", level=logging.ERROR)
return {
"summary": {
"total_cost": 0.0,
"total_tokens": 0,
"request_count": 0
},
"model_breakdown": [],
"provider_breakdown": [],
"top_users": []
}
finally:
session.close()
def get_recent_chat_history(self, chat_id: int, limit: int = 5) -> List[Dict[str, Any]]:
"""
Get recent message history for a chat, limited to the last 'limit' messages.
Args:
chat_id: ID of the chat to get history for
limit: Maximum number of recent messages to return
Returns:
List of dictionaries containing message information
"""
session = self.Session()
try:
# Ensure safe limit for both databases
safe_limit = min(max(1, limit), 50) * 2 # Between 2 and 100 messages
# Use subquery for more efficient pagination in PostgreSQL
subquery = session.query(Message).filter(
Message.chat_id == chat_id
).order_by(Message.timestamp.desc()).limit(safe_limit).subquery()
# Query from the subquery and sort in chronological order
messages = session.query(Message).from_statement(
session.query(subquery).order_by(subquery.c.timestamp).statement
).all()
return [
{
"message_id": msg.message_id,
"chat_id": msg.chat_id,
"content": msg.content,
"sender": msg.sender,
"timestamp": msg.timestamp.isoformat() if msg.timestamp else None
} for msg in messages
]
except SQLAlchemyError as e:
logger.log_message(f"Error retrieving chat history: {str(e)}", level=logging.ERROR)
return []
finally:
session.close()
def extract_response_history(self, messages: List[Dict[str, Any]]) -> str:
"""
Extract response history from message history.
Args:
messages: List of message dictionaries
Returns:
String containing combined response history in a structured format
"""
summaries = []
user_messages = []
# Input validation
if not messages or not isinstance(messages, list):
return ""
try:
for msg in messages:
# Skip invalid messages
if not isinstance(msg, dict):
continue
# Get User Messages
if msg.get("sender") == "user":
user_messages.append(msg)
# Ensure content exists and is from AI before extracting summary
if msg.get("sender") == "ai" and "content" in msg and msg["content"]:
content = msg["content"]
# Use a safer regex pattern with timeout protection
try:
matches = re.findall(r"### Summary\n(.*?)(?=\n\n##|\Z)", content, re.DOTALL)
summaries.extend(match.strip() for match in matches if match)
except Exception as e:
logger.log_message(f"Error extracting summaries: {str(e)}", level=logging.ERROR)
# Combine user messages with summaries in a structured format
combined_conversations = []
for i, user_msg in enumerate(user_messages):
if i < len(summaries):
# Ensure content exists and is not too long
user_content = user_msg.get('content', '')
if user_content and isinstance(user_content, str):
# Truncate if needed
if len(user_content) > 500:
user_content = user_content[:497] + "..."
summary = summaries[i]
if len(summary) > 500:
summary = summary[:497] + "..."
combined_conversations.append(f"Query: {user_content}\nSummary: {summary}")
# Return the last 3 conversations to maintain context
formatted_context = "\n\n".join(combined_conversations[-3:])
# Add a clear header to indicate this is past interaction history
if formatted_context:
return f"### Previous Interaction History:\n{formatted_context}"
return ""
except Exception as e:
logger.log_message(f"Error in extract_response_history: {str(e)}", level=logging.ERROR)
return ""
|