Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 46,495 Bytes
cae56b3 b05d409 cae56b3 b05d409 46db677 cae56b3 46db677 b05d409 cae56b3 46db677 cae56b3 46db677 cae56b3 46db677 cae56b3 46db677 cae56b3 6b57d80 cae56b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 |
import asyncio
import ast
import json
import os
import dspy
import numpy as np
import pandas as pd
from dotenv import load_dotenv
from src.utils.logger import Logger
import logging
import datetime
import re
import textwrap
def clean_print_statements(code_block):
"""
This function cleans up any `print()` statements that might contain unwanted `\n` characters.
It ensures print statements are properly formatted without unnecessary newlines.
"""
# This regex targets print statements, even if they have newlines inside
return re.sub(r'print\((.*?)(\\n.*?)(.*?)\)', r'print(\1\3)', code_block, flags=re.DOTALL)
def clean_unicode_chars(text):
"""
Clean Unicode characters that might cause encoding issues.
Replaces common Unicode characters with ASCII equivalents.
"""
if not isinstance(text, str):
return text
# Replace common Unicode characters with ASCII equivalents
replacements = {
'\u2192': ' -> ', # Right arrow
'\u2190': ' <- ', # Left arrow
'\u2194': ' <-> ', # Left-right arrow
'\u2500': '-', # Box drawing horizontal
'\u2502': '|', # Box drawing vertical
'\u2026': '...', # Ellipsis
'\u2013': '-', # En dash
'\u2014': '-', # Em dash
'\u201c': '"', # Left double quotation mark
'\u201d': '"', # Right double quotation mark
'\u2018': "'", # Left single quotation mark
'\u2019': "'", # Right single quotation mark
}
for unicode_char, ascii_replacement in replacements.items():
text = text.replace(unicode_char, ascii_replacement)
# Remove any remaining non-ASCII characters
text = text.encode('ascii', 'ignore').decode('ascii')
return text
def remove_main_block(code):
# Match the __main__ block
pattern = r'(?m)^if\s+__name__\s*==\s*["\']__main__["\']\s*:\s*\n((?:\s+.*\n?)*)'
match = re.search(pattern, code)
if match:
main_block = match.group(1)
# Dedent the code block inside __main__
dedented_block = textwrap.dedent(main_block)
# Remove \n from any print statements in the block (also handling multiline print cases)
dedented_block = clean_print_statements(dedented_block)
# Replace the block in the code
cleaned_code = re.sub(pattern, dedented_block, code)
# Optional: Remove leading newlines if any
cleaned_code = cleaned_code.strip()
return cleaned_code
return code
# Configure Plotly to prevent auto-display
def configure_plotly_no_display():
"""Configure Plotly to prevent automatic browser display"""
try:
import plotly.io as pio
# Set environment variables to prevent browser opening
os.environ['BROWSER'] = ''
os.environ['PLOTLY_RENDERER'] = 'json'
# Configure Plotly renderers
pio.renderers.default = 'json'
pio.templates.default = 'plotly_white'
# Disable Kaleido auto-display if available
try:
import plotly.graph_objects as go
# Configure figure defaults to not auto-display
go.Figure.show = lambda self, *args, **kwargs: None
except ImportError:
pass
except ImportError:
print("Warning: Plotly not available for configuration")
# Call the configuration function immediately
configure_plotly_no_display()
logger = Logger("deep_agents", see_time=True, console_log=False)
load_dotenv()
class deep_questions(dspy.Signature):
"""
You are a data analysis assistant.
Your role is to take a user's high-level analytical goal and generate a set of deep, targeted follow-up questions. These questions should guide an analyst toward a more thorough understanding of the goal by encouraging exploration, segmentation, and causal reasoning.
Instructions:
- Generate up to 5 insightful, data-relevant questions.
- Use the dataset structure to tailor your questions (e.g., look at the available columns, data types, and what kind of information they can reveal).
- The questions should help the user decompose their analytic goal and explore it from multiple angles (e.g., time trends, customer segments, usage behavior, external factors, feedback).
- Each question should be specific enough to guide actionable analysis or investigation.
- Use a clear and concise style, but maintain depth.
Inputs:
- goal: The user's analytical goal or main question they want to explore
- dataset_info: A description of the dataset the user is querying, including:
- What the dataset represents
- Key columns and their data types
Output:
- deep_questions: A list of up to 5 specific, data-driven questions that support the analytic goal
---
Example:
Analytical Goal:
Understand why churn has been rising
Dataset Info:
Customer Retention Dataset tracking subscription activity over time.
Columns:
- customer_id (string)
- join_date (date)
- churn_date (date, nullable)
- is_churned (boolean)
- plan_type (string: 'basic', 'premium', 'enterprise')
- region (string)
- last_login_date (date)
- avg_weekly_logins (float)
- support_tickets_last_30d (int)
- satisfaction_score (float, 0–10 scale)
Decomposed Questions:
1. How has the churn rate changed month-over-month, and during which periods was the increase most pronounced?
2. Are specific plan types or regions showing a higher churn rate relative to others?
3. What is the average satisfaction score and support ticket count among churned users compared to retained users?
4. Do churned users exhibit different login behavior (e.g., avg_weekly_logins) in the weeks leading up to their churn date?
5. What is the tenure distribution (time from join_date to churn_date) among churned customers, and are short-tenure users more likely to churn?
"""
goal = dspy.InputField(desc="User analytical goal — what main insight or question they want to answer")
dataset_info = dspy.InputField(desc="A description of the dataset: what it represents, and the main columns with data types")
deep_questions = dspy.OutputField(desc="A list of up to five questions that help deeply explore the analytical goal using the dataset")
class deep_synthesizer(dspy.Signature):
"""
You are a data analysis synthesis expert.
Your job is to take the outputs from a multi-agent data analytics system - including the original user query, the code summaries from each agent, and the actual printed results from running those code blocks - and synthesize them into a comprehensive, well-structured final report.
This report should:
- Explain what steps were taken and why (based on the query)
- Summarize the code logic used by each agent, without including raw code
- Highlight key findings and results from the code outputs
- Offer clear, actionable insights tied back to the user's original question
- Be structured, readable, and suitable for decision-makers or analysts
Instructions:
- Begin with a brief restatement of the original query and what it aimed to solve
- Organize your report step-by-step or by analytical theme (e.g., segmentation, trend analysis, etc.)
- For each part, summarize what was analyzed, how (based on code summaries), and what the result was (based on printed output)
- End with a final set of synthesized conclusions and potential next steps or recommendations
Inputs:
- query: The user's original analytical question or goal
- summaries: A list of natural language descriptions of what each agent's code did
- print_outputs: A list of printed outputs (results) from running each agent's code
Output:
- synthesized_report: A structured and readable report that ties all parts together, grounded in the code logic and results
Example use:
You are not just summarizing outputs - you're telling a story that answers the user's query using real data.
"""
query = dspy.InputField(desc="The original user query or analytical goal")
summaries = dspy.InputField(desc="List of code summaries - each describing what a particular agent's code did")
print_outputs = dspy.InputField(desc="List of print outputs - the actual data insights generated by the code")
synthesized_report = dspy.OutputField(desc="The final, structured report that synthesizes all the information into clear insights")
def clean_and_store_code(code, session_df=None):
"""
Cleans and stores code execution results in a standardized format.
Args:
code (str): Raw code text to execute
session_df (DataFrame): Optional session DataFrame
Returns:
dict: Execution results containing printed_output, plotly_figs, and error info
"""
import io
import sys
import re
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.io as pio
# Make session DataFrame available globally if provided
if session_df is not None:
globals()['df'] = session_df
# Initialize output containers
output_dict = {
'exec_result': None,
'printed_output': '',
'plotly_figs': [],
'error': None
}
try:
# Clean the code
cleaned_code = code.strip()
cleaned_code = cleaned_code.replace('```python', '').replace('```', '')
# Fix try statement syntax
cleaned_code = cleaned_code.replace('try\n', 'try:\n')
# Remove code patterns that would make the code unrunnable
invalid_patterns = [
'```', # Code block markers
'\\n', # Raw newlines
'\\t', # Raw tabs
'\\r', # Raw carriage returns
]
for pattern in invalid_patterns:
if pattern in cleaned_code:
cleaned_code = cleaned_code.replace(pattern, '')
# Remove reading the csv file if it's already in the context
cleaned_code = re.sub(r"df\s*=\s*pd\.read_csv\([\"\'].*?[\"\']\).*?(\n|$)", '', cleaned_code)
# Only match assignments at top level (not indented)
# 1. Remove 'df = pd.DataFrame()' if it's at the top level
cleaned_code = re.sub(
r"^df\s*=\s*pd\.DataFrame\(\s*\)\s*(#.*)?$",
'',
cleaned_code,
flags=re.MULTILINE
)
cleaned_code = re.sub(r"plt\.show\(\).*?(\n|$)", '', cleaned_code)
# Remove all .show() method calls more comprehensively
cleaned_code = re.sub(r'\b\w*\.show\(\)', '', cleaned_code)
cleaned_code = re.sub(r'^\s*\w*fig\w*\.show\(\)\s*;?\s*$', '', cleaned_code, flags=re.MULTILINE)
# Additional patterns to catch more .show() variations
cleaned_code = re.sub(r'\.show\(\s*\)', '', cleaned_code) # .show() with optional spaces
cleaned_code = re.sub(r'\.show\(\s*renderer\s*=\s*[\'"][^\'\"]*[\'"]\s*\)', '', cleaned_code) # .show(renderer='...')
cleaned_code = re.sub(r'plotly_figs\[\d+\]\.show\(\)', '', cleaned_code) # plotly_figs[0].show()
# More comprehensive patterns
cleaned_code = re.sub(r'\.show\([^)]*\)', '', cleaned_code) # .show(any_args)
cleaned_code = re.sub(r'fig\w*\.show\(\s*[^)]*\s*\)', '', cleaned_code) # fig*.show(any_args)
cleaned_code = re.sub(r'\w+_fig\w*\.show\(\s*[^)]*\s*\)', '', cleaned_code) # *_fig*.show(any_args)
cleaned_code = remove_main_block(cleaned_code)
# Clean Unicode characters that might cause encoding issues
cleaned_code = clean_unicode_chars(cleaned_code)
# Capture printed output
old_stdout = sys.stdout
captured_output = io.StringIO()
sys.stdout = captured_output
# Create execution environment with common imports and session data
exec_globals = {
'__builtins__': __builtins__,
'pd': __import__('pandas'),
'np': __import__('numpy'),
'px': px,
'go': go,
'make_subplots': make_subplots,
'plotly_figs': [],
'print': print,
}
# Add session DataFrame if available
if session_df is not None:
exec_globals['df'] = session_df
elif 'df' in globals():
exec_globals['df'] = globals()['df']
# Add other common libraries that might be needed
try:
exec_globals['sm'] = __import__('statsmodels.api', fromlist=[''])
exec_globals['train_test_split'] = __import__('sklearn.model_selection', fromlist=['train_test_split']).train_test_split
exec_globals['LinearRegression'] = __import__('sklearn.linear_model', fromlist=['LinearRegression']).LinearRegression
exec_globals['mean_absolute_error'] = __import__('sklearn.metrics', fromlist=['mean_absolute_error']).mean_absolute_error
exec_globals['r2_score'] = __import__('sklearn.metrics', fromlist=['r2_score']).r2_score
exec_globals['LabelEncoder'] = __import__('sklearn.preprocessing', fromlist=['LabelEncoder']).LabelEncoder
exec_globals['warnings'] = __import__('warnings')
except ImportError as e:
print(f"Warning: Could not import some optional libraries: {e}")
# Execute the code
exec(cleaned_code, exec_globals)
# Restore stdout
sys.stdout = old_stdout
# Get the captured output
printed_output = captured_output.getvalue()
output_dict['printed_output'] = printed_output
# Extract plotly figures from the execution environment
if 'plotly_figs' in exec_globals:
plotly_figs = exec_globals['plotly_figs']
if isinstance(plotly_figs, list):
output_dict['plotly_figs'] = plotly_figs
else:
output_dict['plotly_figs'] = [plotly_figs] if plotly_figs else []
# Also check for any figure variables that might have been created
for var_name, var_value in exec_globals.items():
if hasattr(var_value, 'to_json') and hasattr(var_value, 'show'):
# This looks like a Plotly figure
if var_value not in output_dict['plotly_figs']:
output_dict['plotly_figs'].append(var_value)
except Exception as e:
# Restore stdout in case of error
sys.stdout = old_stdout
error_msg = str(e)
output_dict['error'] = error_msg
output_dict['printed_output'] = f"Error executing code: {error_msg}"
print(f"Code execution error: {error_msg}")
return output_dict
def score_code(args, code):
"""
Cleans and stores code execution results in a standardized format.
Safely handles execution errors and returns clean output even if execution fails.
Ensures plotly figures are properly created and captured.
Args:
args: Arguments (unused but required for dspy.Refine)
code: Code object with combined_code attribute
Returns:
int: Score (0=error, 1=success, 2=success with plots)
"""
code_text = code.combined_code
try:
# Fix try statement syntax
code_text = code_text.replace('try\n', 'try:\n')
code_text = code_text.replace('```python', '').replace('```', '')
# Remove code patterns that would make the code unrunnable
invalid_patterns = [
'```', '\\n', '\\t', '\\r'
]
for pattern in invalid_patterns:
if pattern in code_text:
code_text = code_text.replace(pattern, '')
cleaned_code = re.sub(r"plt\.show\(\).*?(\n|$)", '', code_text)
# Remove all .show() method calls more comprehensively
cleaned_code = re.sub(r'\b\w*\.show\(\)', '', cleaned_code)
cleaned_code = re.sub(r'^\s*\w*fig\w*\.show\(\)\s*;?\s*$', '', cleaned_code, flags=re.MULTILINE)
# Additional patterns to catch more .show() variations
cleaned_code = re.sub(r'\.show\(\s*\)', '', cleaned_code) # .show() with optional spaces
cleaned_code = re.sub(r'\.show\(\s*renderer\s*=\s*[\'"][^\'\"]*[\'"]\s*\)', '', cleaned_code) # .show(renderer='...')
cleaned_code = re.sub(r'plotly_figs\[\d+\]\.show\(\)', '', cleaned_code) # plotly_figs[0].show()
# More comprehensive patterns
cleaned_code = re.sub(r'\.show\([^)]*\)', '', cleaned_code) # .show(any_args)
cleaned_code = re.sub(r'fig\w*\.show\(\s*[^)]*\s*\)', '', cleaned_code) # fig*.show(any_args)
cleaned_code = re.sub(r'\w+_fig\w*\.show\(\s*[^)]*\s*\)', '', cleaned_code) # *_fig*.show(any_args)
cleaned_code = remove_main_block(cleaned_code)
# Capture stdout using StringIO
from io import StringIO
import sys
import plotly.graph_objects as go
stdout_capture = StringIO()
original_stdout = sys.stdout
sys.stdout = stdout_capture
# Execute code in a new namespace to avoid polluting globals
local_vars = {}
exec(cleaned_code, globals(), local_vars)
# Capture any plotly figures from local namespace
plotly_figs = []
for var_name, var in local_vars.items():
if isinstance(var, go.Figure):
if not var.layout.title:
var.update_layout(title=f"Figure {len(plotly_figs) + 1}")
if not var.layout.template:
var.update_layout(template="plotly_white")
plotly_figs.append(var)
elif isinstance(var, (list, tuple)):
for item in var:
if isinstance(item, go.Figure):
if not item.layout.title:
item.update_layout(title=f"Figure {len(plotly_figs) + 1}")
if not item.layout.template:
item.update_layout(template="plotly_white")
plotly_figs.append(item)
# Restore stdout and get captured output
sys.stdout = original_stdout
captured_output = stdout_capture.getvalue()
stdout_capture.close()
# Calculate score based on execution and plot generation
score = 2 if plotly_figs else 1
return score
except Exception as e:
# Restore stdout in case of error
if 'stdout_capture' in locals():
sys.stdout = original_stdout
stdout_capture.close()
return 0
class deep_planner(dspy.Signature):
"""
You are an advanced multi-question planning agent. Your task is to generate the most optimized and minimal plan
to answer up to 5 analytical questions using available agents.
Your responsibilities:
1. Feasibility: Verify that the goal is achievable using the provided datasets and agent descriptions.
2. Optimization:
- Batch up to 2 similar questions per agent call.
- Reuse outputs across questions wherever possible.
- Avoid unnecessary agents or redundant processing.
- Minimize total agent calls while preserving correctness.
3. Clarity:
- Define clear variable usage (create/use).
- Specify concise step-by-step instructions per agent.
- Use dependency arrows (->) to indicate required agent outputs used by others.
Inputs:
- deep_questions: A list of up to 5 deep analytical questions (e.g., ["q1", "q2", ..., "q5"])
- dataset: The available dataset(s) in memory or context
- agents_desc: Dictionary containing each agent's name and its capabilities or descriptions
Outputs:
- plan_instructions: Detailed per-agent variable flow and functionality in the format:
{
"agent_x": {
"create": ["cleaned_data: DataFrame - cleaned version of the input dataset"],
"use": ["df: DataFrame - raw input dataset"],
"instruction": "Clean the dataset by handling null values and standardizing formats."
},
"agent_y": {
"create": ["analysis_results: dict - results of correlation analysis"],
"use": ["cleaned_data: DataFrame - output from @agent_x"],
"instruction": "Perform correlation analysis to identify strong predictors."
}
}
Output Goal:
Generate a small, clean, optimized execution plan using minimal agent calls, reusable outputs, and well-structured dependencies.
USE THE EXACT NAME OF THE AGENTS IN THE INSTRUCTIONS
"""
deep_questions = dspy.InputField(desc="List of up to 5 deep analytical questions to answer")
dataset = dspy.InputField(desc="Available datasets, use 'df' as the working dataset")
agents_desc = dspy.InputField(desc="Descriptions of available agents and their functions")
plan_instructions = dspy.OutputField(desc="Variable-level instructions for each agent used in the plan")
class deep_plan_fixer(dspy.Signature):
"""
You are a plan instruction fixer agent. Your task is to take potentially malformed plan instructions
and convert them into a properly structured dictionary format that can be safely evaluated.
Your responsibilities:
1. Parse and validate the input plan instructions
2. Convert the instructions into a proper dictionary format
3. Ensure all agent instructions follow the required structure:
{
"@agent_name": {
"create": ["variable: type - description"],
"use": ["variable: type - description"],
"instruction": "clear instruction text"
}
}
4. Handle any malformed or missing components
5. Return a properly formatted dictionary string that can be safely evaluated
Inputs:
- plan_instructions: The potentially malformed plan instructions to fix
Outputs:
- fixed_plan: A properly formatted dictionary string that can be safely evaluated
"""
plan_instructions = dspy.InputField(desc="The potentially malformed plan instructions to fix")
fixed_plan = dspy.OutputField(desc="Properly formatted dictionary string that can be safely evaluated")
class final_conclusion(dspy.Signature):
"""
You are a high-level analytics reasoning engine.
Your task is to take multiple synthesized analytical results (each answering part of the original query) and produce a cohesive final conclusion that directly addresses the user's original question.
This is not just a summary — it's a judgment. Use evidence from the synthesized findings to:
- Answer the original question with clarity
- Highlight the most important insights
- Offer any causal reasoning or patterns discovered
- Suggest next steps or strategic recommendations where appropriate
Instructions:
- Focus on relevance to the original query
- Do not just repeat what the synthesized sections say — instead, infer, interpret, and connect dots
- Prioritize clarity and insight over detail
- End with a brief "Next Steps" section if applicable
Inputs:
- query: The original user question or goal
- synthesized_sections: A list of synthesized result sections from the deep_synthesizer step (each covering part of the analysis)
Output:
- final_summary: A cohesive final conclusion that addresses the query, draws insight, and offers high-level guidance
---
Example Output Structure:
**Conclusion**
Summarize the overall answer to the user's question, using the most compelling evidence across the synthesized sections.
**Key Takeaways**
- Bullet 1
- Bullet 2
- Bullet 3
**Recommended Next Steps**
(Optional based on context)
"""
query = dspy.InputField(desc="The user's original query or analytical goal")
synthesized_sections = dspy.InputField(desc="List of synthesized outputs — each one corresponding to a sub-part of the analysis")
final_conclusion = dspy.OutputField(desc="A cohesive, conclusive answer that addresses the query and integrates key insights")
class deep_code_synthesizer(dspy.Signature):
"""
You are a code synthesis and optimization engine that combines and fixes code from multiple analytical agents.
Your task is to take code outputs from preprocessing, statistical analysis, machine learning, and visualization agents, then:
- Combine them into a single, coherent analysis pipeline
- Fix any errors or inconsistencies between agent outputs
- Ensure proper data flow between steps
- Optimize the combined code for efficiency
- Add necessary imports and dependencies
- Handle any data type mismatches or conversion issues
- Validate and normalize data types between agent outputs (e.g., ensure DataFrame operations maintain DataFrame type)
- Convert between common data structures (lists, dicts, DataFrames) as needed
- Add type hints and validation checks
- Ensure consistent variable naming across agents
- Ensure all visualizations use Plotly exclusively
- Create comprehensive visualizations that show all important variables and relationships
- Store all Plotly figures in a list for later use in the report
Instructions:
- Review each agent's code for correctness and completeness
- Ensure variables are properly passed between steps with consistent types
- Fix any syntax errors or logical issues
- Add error handling and type validation where needed
- Optimize code structure and performance
- Maintain consistent coding style
- Add clear comments explaining the analysis flow
- Add data type conversion functions where needed
- Validate input/output types between agent steps
- Handle edge cases where agents might return different data structures
- Convert any non-Plotly visualizations to Plotly format
- Ensure all important variables are visualized appropriately
- Store all Plotly figures in a list called plotly_figs
- Include appropriate titles, labels, and legends for all visualizations
- Use consistent styling across all Plotly visualizations
- DONOT COMMENT OUT ANYTHING AS THE CODE SHOULD RUN & SHOW OUTPUTS
- THE DATASET IS ALREADY LOADED, DON'T CREATE FAKE DATA. 'df' is always loaded
Inputs:
- deep_questions- The five deep questions this system is answering
- dataset_info - Information about the dataset structure and types
- planner_instructions - the plan according to the planner, ensure that the final code makes everything coherent
- code - List of all agent code
Output:
- combined_code: - A single, optimized Python script that combines all analysis steps with proper type handling and Plotly visualizations
"""
deep_questions = dspy.InputField(desc="The five deep questions this system is answering")
dataset_info = dspy.InputField(desc="Information about the dataset")
planner_instructions = dspy.InputField(desc="The planner instructions for each")
code = dspy.InputField(desc="The code generated by all agents")
combined_code = dspy.OutputField(desc="A single, optimized Python script that combines all analysis steps")
class deep_code_fix(dspy.Signature):
"""
You are a code debugging and fixing agent that analyzes and repairs code errors.
Your task is to:
- Analyze error messages and identify root causes
- Fix syntax errors, logical issues, and runtime problems
- Ensure proper data type handling and conversions
- Add appropriate error handling and validation
- Maintain code style and documentation
- Preserve the original analysis intent
Instructions:
- Carefully analyze the error message and stack trace
- Identify the specific line(s) causing the error
- Determine if the issue is syntax, logic, or runtime related
- Fix the code while maintaining its original purpose
- Add appropriate error handling if needed
- Ensure the fix doesn't introduce new issues
- Document the changes made
Inputs:
- code: The code that generated the error
- error: The error message and stack trace
Output:
- fixed_code: The repaired code with error handling
- fix_explanation: Explanation of what was fixed and why
"""
code = dspy.InputField(desc="The code that generated the error")
error = dspy.InputField(desc="The error message and stack trace")
fixed_code = dspy.OutputField(desc="The repaired code with error handling")
fix_explanation = dspy.OutputField(desc="Explanation of what was fixed and why")
chart_instructions = """
Chart Styling Guidelines:
1. General Styling:
- Use a clean, professional color palette (e.g., Tableau, ColorBrewer)
- Include clear titles and axis labels
- Add appropriate legends
- Use consistent font sizes and styles
- Include grid lines where helpful
- Add hover information for interactive plots
2. Specific Chart Types:
- Bar Charts:
* Use horizontal bars for many categories
* Sort bars by value when appropriate
* Use consistent bar widths
* Add value labels on bars
- Line Charts:
* Use distinct line styles/colors
* Add markers at data points
* Include trend lines when relevant
* Show confidence intervals if applicable
- Scatter Plots:
* Use appropriate marker sizes
* Add regression lines when needed
* Use color to show additional dimensions
* Include density contours for large datasets
- Heatmaps:
* Use diverging color schemes for correlation
* Include value annotations
* Sort rows/columns by similarity
* Add clear color scale legend
3. Data Visualization Best Practices:
- Start axes at zero when appropriate
- Use log scales for wide-ranging data
- Include reference lines/benchmarks
- Add annotations for important points
- Show uncertainty where relevant
- Use consistent color encoding
- Include data source and timestamp
- Add clear figure captions
4. Interactive Features:
- Enable zooming and panning
- Add tooltips with detailed information
- Include download options
- Allow toggling of data series
- Enable cross-filtering between charts
5. Accessibility:
- Use colorblind-friendly palettes
- Include alt text for all visualizations
- Ensure sufficient contrast
- Make interactive elements keyboard accessible
- Provide text alternatives for key insights
"""
class deep_analysis_module(dspy.Module):
def __init__(self,agents, agents_desc):
# logger.log_message(f"Initializing deep_analysis_module with {agents} agents: {list(agents.keys())}", level=logging.INFO)
self.agents = agents
# Make all dspy operations async using asyncify
self.deep_questions = dspy.asyncify(dspy.Predict(deep_questions))
self.deep_planner = dspy.asyncify(dspy.ChainOfThought(deep_planner))
self.deep_synthesizer = dspy.asyncify(dspy.ChainOfThought(deep_synthesizer))
# Keep both asyncified and non-asyncified versions for code synthesizer
self.deep_code_synthesizer_sync = dspy.Predict(deep_code_synthesizer) # For dspy.Refine
self.deep_code_synthesizer = dspy.asyncify(dspy.Predict(deep_code_synthesizer)) # For async use
self.deep_plan_fixer = dspy.asyncify(dspy.ChainOfThought(deep_plan_fixer))
self.deep_code_fixer = dspy.asyncify(dspy.ChainOfThought(deep_code_fix))
self.styling_instructions = chart_instructions
self.agents_desc = agents_desc
self.final_conclusion = dspy.asyncify(dspy.ChainOfThought(final_conclusion))
# logger.log_message(f"Deep analysis module initialized successfully with agents: {list(self.agents.keys())}", level=logging.INFO)
async def execute_deep_analysis_streaming(self, goal, dataset_info, session_df=None):
"""
Execute deep analysis with streaming progress updates.
This is an async generator that yields progress updates incrementally.
"""
# Make the session DataFrame available globally for code execution
if session_df is not None:
globals()['df'] = session_df
try:
# Step 1: Generate deep questions (20% progress)
yield {
"step": "questions",
"status": "processing",
"message": "Generating analytical questions...",
"progress": 10
}
questions = await self.deep_questions(goal=goal, dataset_info=dataset_info)
logger.log_message("Questions generated")
yield {
"step": "questions",
"status": "completed",
"content": questions.deep_questions,
"progress": 20
}
# Step 2: Create analysis plan (40% progress)
yield {
"step": "planning",
"status": "processing",
"message": "Creating analysis plan...",
"progress": 25
}
question_list = [q.strip() for q in questions.deep_questions.split('\n') if q.strip()]
deep_plan = await self.deep_planner(
deep_questions=questions.deep_questions,
dataset=dataset_info,
agents_desc=str(self.agents_desc)
)
logger.log_message("Plan created")
# Parse plan instructions
try:
plan_instructions = ast.literal_eval(deep_plan.plan_instructions)
if not isinstance(plan_instructions, dict):
plan_instructions = json.loads(deep_plan.plan_instructions)
keys = [key for key in plan_instructions.keys()]
if not all(key in self.agents for key in keys):
raise ValueError(f"Invalid agent key(s) in plan instructions. Available agents: {list(self.agents.keys())}")
logger.log_message(f"Plan instructions: {plan_instructions}", logging.INFO)
logger.log_message(f"Keys: {keys}", logging.INFO)
except (ValueError, SyntaxError, json.JSONDecodeError) as e:
try:
deep_plan = await self.deep_plan_fixer(plan_instructions=deep_plan.plan_instructions)
plan_instructions = ast.literal_eval(deep_plan.fixed_plan)
if not isinstance(plan_instructions, dict):
plan_instructions = json.loads(deep_plan.fixed_plan)
keys = [key for key in plan_instructions.keys()]
except (ValueError, SyntaxError, json.JSONDecodeError) as e:
logger.log_message(f"Error parsing plan instructions: {e}", logging.ERROR)
raise e
logger.log_message("Instructions parsed")
yield {
"step": "planning",
"status": "completed",
"content": deep_plan.plan_instructions,
"progress": 40
}
# Step 3: Execute agent tasks (60% progress)
yield {
"step": "agent_execution",
"status": "processing",
"message": "Executing analysis agents...",
"progress": 45
}
queries = [
dspy.Example(
goal=questions.deep_questions,
dataset=dataset_info,
plan_instructions=str(plan_instructions[key]),
**({"styling_index": "Sample styling guidelines"} if "data_viz" in key or "viz" in key.lower() or "visual" in key.lower() or "plot" in key.lower() or "chart" in key.lower() else {})
).with_inputs(
"goal",
"dataset",
"plan_instructions",
*(["styling_index"] if "data_viz" in key or "viz" in key.lower() or "visual" in key.lower() or "plot" in key.lower() or "chart" in key.lower() else [])
)
for key in keys
]
tasks = [self.agents[key](**q) for q, key in zip(queries, keys)]
# Await all tasks to complete
summaries = []
codes = []
logger.log_message("Tasks started")
completed_tasks = 0
for task in asyncio.as_completed(tasks):
result = await task
summaries.append(result.summary)
codes.append(result.code)
completed_tasks += 1
# Update progress for each completed agent
agent_progress = 45 + (completed_tasks / len(tasks)) * 15 # 45% to 60%
yield {
"step": "agent_execution",
"status": "processing",
"message": f"Completed {completed_tasks}/{len(tasks)} analysis agents...",
"progress": int(agent_progress)
}
logger.log_message(f"Done with agent {completed_tasks}/{len(tasks)}")
yield {
"step": "agent_execution",
"status": "completed",
"message": "All analysis agents completed",
"progress": 60
}
# Step 4: Code synthesis (80% progress)
yield {
"step": "code_synthesis",
"status": "processing",
"message": "Analyzing code...",
"progress": 65
}
# Safely extract code from agent outputs
code = []
for c in codes:
try:
cleaned_code = remove_main_block(c)
if "```python" in cleaned_code:
parts = cleaned_code.split("```python")
if len(parts) > 1:
extracted = parts[1].split("```")[0] if "```" in parts[1] else parts[1]
code.append(extracted.replace('try\n','try:\n'))
else:
code.append(cleaned_code.replace('try\n','try:\n'))
else:
code.append(cleaned_code.replace('try\n','try:\n'))
except Exception as e:
logger.log_message(f"Warning: Error processing code block: {e}", logging.WARNING)
code.append(c.replace('try\n','try:\n'))
# Create deep coder without asyncify to avoid source inspection issues
deep_coder = dspy.Refine(module=self.deep_code_synthesizer_sync, N=5, reward_fn=score_code, threshold=1.0, fail_count=10)
# Check if we have valid API key
anthropic_key = os.environ.get('ANTHROPIC_API_KEY')
if not anthropic_key:
raise ValueError("ANTHROPIC_API_KEY environment variable is not set")
try:
# Create the LM instance that will be used
thread_lm = dspy.LM("anthropic/claude-sonnet-4-20250514", api_key=anthropic_key, max_tokens=17000)
logger.log_message("Starting code generation...")
start_time = datetime.datetime.now()
logger.log_message(f"Code generation started at: {start_time.strftime('%Y-%m-%d %H:%M:%S')}")
# Define the blocking function to run in thread
def run_deep_coder():
with dspy.context(lm=thread_lm):
return deep_coder(
deep_questions=str(questions.deep_questions),
dataset_info=dataset_info,
planner_instructions=str(plan_instructions),
code=str(code)
)
# Use asyncio.to_thread for better async integration
deep_code = await asyncio.to_thread(run_deep_coder)
logger.log_message(f"Code generation completed at: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
except Exception as e:
logger.log_message(f"Error during code generation: {str(e)}", logging.ERROR)
raise e
code = deep_code.combined_code
code = code.replace('```python', '').replace('```', '')
# Clean Unicode characters that might cause encoding issues
code = clean_unicode_chars(code)
yield {
"step": "code_synthesis",
"status": "completed",
"message": "Code synthesis completed",
"progress": 80
}
# Step 5: Execute code (85% progress)
yield {
"step": "code_execution",
"status": "processing",
"message": "Executing code...",
"progress": 82
}
# Execute the code with error handling and session DataFrame
try:
# Run code execution in thread pool to avoid blocking
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(clean_and_store_code, code, session_df)
output = future.result(timeout=300) # 5 minute timeout
logger.log_message(f"Deep Code executed")
if output.get('error'):
logger.log_message(f"Warning: Code execution had errors: {output['error']}", logging.ERROR)
print_outputs = [output['printed_output']]
plotly_figs = [output['plotly_figs']]
except Exception as e:
logger.log_message(f"Error during code execution: {str(e)}", logging.ERROR)
output = {
'exec_result': None,
'printed_output': f"Code execution failed: {str(e)}",
'plotly_figs': [],
'error': str(e)
}
print_outputs = [output['printed_output']]
plotly_figs = [output['plotly_figs']]
yield {
"step": "code_execution",
"status": "completed",
"message": "Code execution completed",
"progress": 85
}
# Step 6: Synthesis (90% progress)
yield {
"step": "synthesis",
"status": "processing",
"message": "Synthesizing results...",
"progress": 87
}
synthesis = []
try:
synthesis_result = await self.deep_synthesizer(
query=goal,
summaries=str(summaries),
print_outputs=str(output['printed_output'])
)
synthesis.append(synthesis_result)
except Exception as e:
logger.log_message(f"Error during synthesis: {str(e)}", logging.ERROR)
synthesis.append(type('obj', (object,), {'synthesized_report': f"Synthesis failed: {str(e)}"})())
logger.log_message("Synthesis done")
yield {
"step": "synthesis",
"status": "completed",
"message": "Synthesis completed",
"progress": 90
}
# Step 7: Final conclusion (100% progress)
yield {
"step": "conclusion",
"status": "processing",
"message": "Generating final conclusion...",
"progress": 95
}
try:
final_conclusion = await self.final_conclusion(
query=goal,
synthesized_sections=str([s.synthesized_report for s in synthesis])
)
except Exception as e:
logger.log_message(f"Error during final conclusion: {str(e)}", logging.ERROR)
final_conclusion = type('obj', (object,), {'final_conclusion': f"Final conclusion failed: {str(e)}"})()
logger.log_message("Conclusion Made")
return_dict = {
'goal': goal,
'deep_questions': questions.deep_questions,
'deep_plan': deep_plan.plan_instructions,
'summaries': summaries,
'code': code,
'plotly_figs': plotly_figs,
'synthesis': [s.synthesized_report for s in synthesis],
'final_conclusion': final_conclusion.final_conclusion
}
yield {
"step": "conclusion",
"status": "completed",
"message": "Analysis completed successfully",
"progress": 100,
"final_result": return_dict
}
logger.log_message("Return dict created")
except Exception as e:
logger.log_message(f"Error in deep analysis: {str(e)}", logging.ERROR)
yield {
"step": "error",
"status": "failed",
"message": f"Deep analysis failed: {str(e)}",
"progress": 0,
"error": str(e)
}
async def execute_deep_analysis(self, goal, dataset_info, session_df=None):
"""
Legacy method for backward compatibility.
Executes the streaming analysis and returns the final result.
"""
final_result = None
async for update in self.execute_deep_analysis_streaming(goal, dataset_info, session_df):
if update.get("step") == "conclusion" and update.get("status") == "completed":
final_result = update.get("final_result")
elif update.get("step") == "error":
raise Exception(update.get("message", "Unknown error"))
return final_result |