File size: 48,864 Bytes
1c66926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6404ca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c66926
5de783f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c66926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ae6757
 
 
46db677
 
1c66926
6404ca9
 
 
 
 
 
5de783f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46db677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de783f
1c66926
 
 
 
 
 
 
 
 
 
5de783f
46db677
5de783f
1c66926
5de783f
46db677
 
 
 
 
 
5de783f
1c66926
 
 
 
 
6404ca9
1c66926
 
 
 
 
 
46db677
1c66926
 
 
 
 
 
 
 
 
 
 
5de783f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c66926
6ae6757
 
 
1c66926
6ae6757
 
1c66926
6ae6757
1c66926
46db677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c66926
46db677
1c66926
 
 
 
 
 
 
 
 
6ae6757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de783f
 
 
6ae6757
 
5de783f
 
 
 
 
 
 
 
 
 
 
6ae6757
5de783f
 
 
 
 
 
 
 
 
 
46db677
 
 
6ae6757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de783f
 
 
 
 
 
 
 
 
 
46db677
 
 
6ae6757
 
 
46db677
6ae6757
 
 
 
 
 
 
 
 
 
46db677
6ae6757
46db677
6ae6757
 
 
 
 
 
 
fd2969e
 
 
 
5de783f
1c66926
6ae6757
fd2969e
 
 
 
 
 
 
 
 
 
5de783f
6ae6757
 
 
fd2969e
 
 
6ae6757
 
fd2969e
 
6ae6757
 
fd2969e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae91f2
fd2969e
 
 
6ae6757
fd2969e
6ae6757
 
5de783f
db749fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de783f
1c66926
 
 
6ae6757
1c66926
 
 
6ae6757
1c66926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de783f
db749fb
 
1c66926
 
 
 
db749fb
0b14a8b
 
6ae6757
db749fb
0b14a8b
 
 
 
1c66926
 
 
 
fd2969e
 
1c66926
5de783f
 
 
 
1c66926
5de783f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c66926
 
 
 
 
 
46db677
1c66926
 
 
46db677
1c66926
 
0b14a8b
46db677
 
 
1c66926
 
0b14a8b
 
1c66926
 
 
 
 
 
 
 
 
46db677
 
 
 
 
1c66926
 
 
 
 
 
 
 
0b14a8b
1c66926
 
fd2969e
 
 
 
 
 
 
1c66926
 
 
5de783f
1c66926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b14a8b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
import re
import json
import sys
import contextlib
from io import StringIO
import time
import logging
from src.utils.logger import Logger
import textwrap

logger = Logger(__name__, level="INFO", see_time=False, console_log=False)

@contextlib.contextmanager
def stdoutIO(stdout=None):
    old = sys.stdout
    if stdout is None:
        stdout = StringIO()
    sys.stdout = stdout
    yield stdout
    sys.stdout = old
    
# Precompile regex patterns for better performance
SENSITIVE_MODULES = re.compile(r"(os|sys|subprocess|dotenv|requests|http|socket|smtplib|ftplib|telnetlib|paramiko)")
IMPORT_PATTERN = re.compile(r"^\s*import\s+(" + SENSITIVE_MODULES.pattern + r").*?(\n|$)", re.MULTILINE)
FROM_IMPORT_PATTERN = re.compile(r"^\s*from\s+(" + SENSITIVE_MODULES.pattern + r").*?(\n|$)", re.MULTILINE)
DYNAMIC_IMPORT_PATTERN = re.compile(r"__import__\s*\(\s*['\"](" + SENSITIVE_MODULES.pattern + r")['\"].*?\)")
ENV_ACCESS_PATTERN = re.compile(r"(os\.getenv|os\.environ|load_dotenv|\.__import__\s*\(\s*['\"]os['\"].*?\.environ)")
FILE_ACCESS_PATTERN = re.compile(r"(open\(|read\(|write\(|file\(|with\s+open)")

# Enhanced API key detection patterns
API_KEY_PATTERNS = [
    # Direct key assignments
    re.compile(r"(?i)(api_?key|access_?token|secret_?key|auth_?token|password|credential|secret)s?\s*=\s*[\"\'][\w\-\+\/\=]{8,}[\"\']"),
    # Function calls with keys
    re.compile(r"(?i)\.set_api_key\(\s*[\"\'][\w\-\+\/\=]{8,}[\"\']"),
    # Dictionary assignments
    re.compile(r"(?i)['\"](?:api_?key|access_?token|secret_?key|auth_?token|password|credential|secret)['\"](?:\s*:\s*)[\"\'][\w\-\+\/\=]{8,}[\"\']"),
    # Common key formats (base64-like, hex)
    re.compile(r"[\"\'](?:[A-Za-z0-9\+\/\=]{32,}|[0-9a-fA-F]{32,})[\"\']"),
    # Bearer token pattern
    re.compile(r"[\"\'](Bearer\s+[\w\-\+\/\=]{8,})[\"\']"),
    # Inline URL with auth
    re.compile(r"https?:\/\/[\w\-\+\/\=]{8,}@")
]

# Network request patterns
NETWORK_REQUEST_PATTERNS = re.compile(r"(requests\.|urllib\.|http\.|\.post\(|\.get\(|\.connect\()")

def check_security_concerns(code_str):
    """Check code for security concerns and return info about what was found"""
    security_concerns = {
        "has_concern": False,
        "messages": [],
        "blocked_imports": False,
        "blocked_dynamic_imports": False,
        "blocked_env_access": False,
        "blocked_file_access": False,
        "blocked_api_keys": False,
        "blocked_network": False
    }
    
    # Check for sensitive imports
    if IMPORT_PATTERN.search(code_str) or FROM_IMPORT_PATTERN.search(code_str):
        security_concerns["has_concern"] = True
        security_concerns["blocked_imports"] = True
        security_concerns["messages"].append("Sensitive module imports blocked")
    
    # Check for __import__ bypass technique
    if DYNAMIC_IMPORT_PATTERN.search(code_str):
        security_concerns["has_concern"] = True
        security_concerns["blocked_dynamic_imports"] = True
        security_concerns["messages"].append("Dynamic import of sensitive modules blocked")
    
    # Check for environment variables access
    if ENV_ACCESS_PATTERN.search(code_str):
        security_concerns["has_concern"] = True
        security_concerns["blocked_env_access"] = True
        security_concerns["messages"].append("Environment variables access blocked")
    
    # Check for file operations
    if FILE_ACCESS_PATTERN.search(code_str):
        security_concerns["has_concern"] = True
        security_concerns["blocked_file_access"] = True
        security_concerns["messages"].append("File operations blocked")
    
    # Check for API key patterns
    for pattern in API_KEY_PATTERNS:
        if pattern.search(code_str):
            security_concerns["has_concern"] = True
            security_concerns["blocked_api_keys"] = True
            security_concerns["messages"].append("API key/token usage blocked")
            break
    
    # Check for network requests
    if NETWORK_REQUEST_PATTERNS.search(code_str):
        security_concerns["has_concern"] = True
        security_concerns["blocked_network"] = True
        security_concerns["messages"].append("Network requests blocked")
    
    return security_concerns

def clean_code_for_security(code_str, security_concerns):
    """Apply security modifications to the code based on detected concerns"""
    modified_code = code_str
    
    # Block sensitive imports if needed
    if security_concerns["blocked_imports"]:
        modified_code = IMPORT_PATTERN.sub(r'# BLOCKED: import \1\n', modified_code)
        modified_code = FROM_IMPORT_PATTERN.sub(r'# BLOCKED: from \1\n', modified_code)
    
    # Block dynamic imports if needed
    if security_concerns["blocked_dynamic_imports"]:
        modified_code = DYNAMIC_IMPORT_PATTERN.sub(r'"BLOCKED_DYNAMIC_IMPORT"', modified_code)
    
    # Block environment access if needed
    if security_concerns["blocked_env_access"]:
        modified_code = ENV_ACCESS_PATTERN.sub(r'"BLOCKED_ENV_ACCESS"', modified_code)
    
    # Block file operations if needed
    if security_concerns["blocked_file_access"]:
        modified_code = FILE_ACCESS_PATTERN.sub(r'"BLOCKED_FILE_ACCESS"', modified_code)
    
    # Block API keys if needed
    if security_concerns["blocked_api_keys"]:
        for pattern in API_KEY_PATTERNS:
            modified_code = pattern.sub(r'"BLOCKED_API_KEY"', modified_code)
    
    # Block network requests if needed
    if security_concerns["blocked_network"]:
        modified_code = NETWORK_REQUEST_PATTERNS.sub(r'"BLOCKED_NETWORK_REQUEST"', modified_code)
    
    # Add warning banner if needed
    if security_concerns["has_concern"]:
        security_message = "⚠️ SECURITY WARNING: " + ". ".join(security_concerns["messages"]) + "."
        modified_code = f"print('{security_message}')\n\n" + modified_code
    
    return modified_code
    
def format_correlation_output(text):
    """Format correlation matrix output for better readability"""
    lines = text.split('\n')
    formatted_lines = []
    
    for line in lines:
        # Skip empty lines at the beginning
        if not line.strip() and not formatted_lines:
            continue
        
        if not line.strip():
            formatted_lines.append(line)
            continue
        
        # Check if this line contains correlation values or variable names
        stripped_line = line.strip()
        parts = stripped_line.split()
        
        if len(parts) > 1:
            # Check if this is a header line with variable names
            if all(part.replace('_', '').replace('-', '').isalpha() for part in parts):
                # This is a header row with variable names
                formatted_header = f"{'':12}"  # Empty first column for row labels
                for part in parts:
                    formatted_header += f"{part:>12}"
                formatted_lines.append(formatted_header)
            elif any(char.isdigit() for char in stripped_line) and ('.' in stripped_line or '-' in stripped_line):
                # This looks like a correlation line with numbers
                row_name = parts[0] if parts else ""
                values = parts[1:] if len(parts) > 1 else []
                
                formatted_row = f"{row_name:<12}"
                for value in values:
                    try:
                        val = float(value)
                        formatted_row += f"{val:>12.3f}"
                    except ValueError:
                        formatted_row += f"{value:>12}"
                
                formatted_lines.append(formatted_row)
            else:
                # Other lines (like titles)
                formatted_lines.append(line)
        else:
            formatted_lines.append(line)
    
    return '\n'.join(formatted_lines)

def format_summary_stats(text):
    """Format summary statistics for better readability"""
    lines = text.split('\n')
    formatted_lines = []
    
    for line in lines:
        if not line.strip():
            formatted_lines.append(line)
            continue
        
        # Check if this is a header line with statistical terms only (missing first column)
        stripped_line = line.strip()
        if any(stat in stripped_line.lower() for stat in ['count', 'mean', 'median', 'std', 'min', 'max', '25%', '50%', '75%']):
            parts = stripped_line.split()
            # Check if this is a header row (starts with statistical terms)
            if parts and parts[0].lower() in ['count', 'mean', 'median', 'std', 'min', 'max', '25%', '50%', '75%']:
                # This is a header row - add proper spacing
                formatted_header = f"{'':12}"  # Empty first column for row labels
                for part in parts:
                    formatted_header += f"{part:>15}"
                formatted_lines.append(formatted_header)
            else:
                # This is a data row - format normally
                row_name = parts[0] if parts else ""
                values = parts[1:] if len(parts) > 1 else []
                
                formatted_row = f"{row_name:<12}"
                for value in values:
                    try:
                        if '.' in value or 'e' in value.lower():
                            val = float(value)
                            if abs(val) >= 1000000:
                                formatted_row += f"{val:>15.2e}"
                            elif abs(val) >= 1:
                                formatted_row += f"{val:>15.2f}"
                            else:
                                formatted_row += f"{val:>15.6f}"
                        else:
                            val = int(value)
                            formatted_row += f"{val:>15}"
                    except ValueError:
                        formatted_row += f"{value:>15}"
                
                formatted_lines.append(formatted_row)
        else:
            # Other lines (titles, etc.) - keep as is
            formatted_lines.append(line)
    
    return '\n'.join(formatted_lines)
    
def clean_print_statements(code_block):
    """
    This function cleans up any `print()` statements that might contain unwanted `\n` characters.
    It ensures print statements are properly formatted without unnecessary newlines.
    """
    # This regex targets print statements, even if they have newlines inside
    return re.sub(r'print\((.*?)(\\n.*?)(.*?)\)', r'print(\1\3)', code_block, flags=re.DOTALL)

def remove_code_block_from_summary(summary):
    # use regex to remove code block from summary list
    summary = re.sub(r'```python\n(.*?)\n```', '', summary)
    return summary.split("\n")

def remove_main_block(code):
    # Match the __main__ block
    pattern = r'(?m)^if\s+__name__\s*==\s*["\']__main__["\']\s*:\s*\n((?:\s+.*\n?)*)'
    
    match = re.search(pattern, code)
    if match:
        main_block = match.group(1)
        
        # Dedent the code block inside __main__
        dedented_block = textwrap.dedent(main_block)
        
        # Remove \n from any print statements in the block (also handling multiline print cases)
        dedented_block = clean_print_statements(dedented_block)
        # Replace the block in the code
        cleaned_code = re.sub(pattern, dedented_block, code)
        
        # Optional: Remove leading newlines if any
        cleaned_code = cleaned_code.strip()
        
        return cleaned_code
    return code


def format_code_block(code_str):
    code_clean = re.sub(r'^```python\n?', '', code_str, flags=re.MULTILINE)
    code_clean = re.sub(r'\n```$', '', code_clean)
    return f'\n{code_clean}\n'

def format_code_backticked_block(code_str):
    code_clean = re.sub(r'^```python\n?', '', code_str, flags=re.MULTILINE)
    code_clean = re.sub(r'\n```$', '', code_clean)
    # Only match assignments at top level (not indented)
    # 1. Remove 'df = pd.DataFrame()' if it's at the top level
  
  
    # Remove reading the csv file if it's already in the context
    modified_code = re.sub(r"df\s*=\s*pd\.read_csv\([\"\'].*?[\"\']\).*?(\n|$)", '', code_clean)
    
    # Only match assignments at top level (not indented)
    # 1. Remove 'df = pd.DataFrame()' if it's at the top level
    modified_code = re.sub(
        r"^df\s*=\s*pd\.DataFrame\(\s*\)\s*(#.*)?$",
        '',
        modified_code,
        flags=re.MULTILINE
    )

    # # Remove sample dataframe lines with multiple array values
    modified_code = re.sub(r"^# Sample DataFrames?.*?(\n|$)", '', modified_code, flags=re.MULTILINE | re.IGNORECASE)
    
    # # Remove plt.show() statements
    modified_code = re.sub(r"plt\.show\(\).*?(\n|$)", '', modified_code)
    
    
    # remove main
    code_clean = remove_main_block(modified_code)
    
    return f'```python\n{code_clean}\n```'

    
def execute_code_from_markdown(code_str, dataframe=None):
    import pandas as pd
    import plotly.express as px
    import plotly
    import plotly.graph_objects as go
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np
    import re
    import traceback
    import sys
    from io import StringIO, BytesIO
    import base64

    # Check for security concerns in the code
    security_concerns = check_security_concerns(code_str)
    
    # Apply security modifications to the code
    modified_code = clean_code_for_security(code_str, security_concerns)
    
    # Enhanced print function that detects and formats tabular data
    captured_outputs = []
    original_print = print
    
    # Set pandas display options for full table display
    pd.set_option('display.max_columns', None)
    pd.set_option('display.max_rows', 20)  # Limit to 20 rows instead of unlimited
    pd.set_option('display.width', None)
    pd.set_option('display.max_colwidth', 50)
    pd.set_option('display.expand_frame_repr', False)
    

    
    def enhanced_print(*args, **kwargs):
        # Convert all args to strings
        str_args = [str(arg) for arg in args]
        output_text = kwargs.get('sep', ' ').join(str_args)
        
        # Special case for DataFrames - use pipe delimiter and clean format
        if isinstance(args[0], pd.DataFrame) and len(args) == 1:
            # Format DataFrame with pipe delimiter using to_csv for reliable column separation
            df = args[0]
            
            # Use StringIO to capture CSV output with pipe delimiter
            from io import StringIO
            csv_buffer = StringIO()
            
            # Export to CSV with pipe delimiter, preserving index
            df.to_csv(csv_buffer, sep='|', index=True, float_format='%.6g')
            csv_output = csv_buffer.getvalue()
            
            # Clean up the CSV output - remove quotes and extra formatting
            lines = csv_output.strip().split('\n')
            cleaned_lines = []
            
            for line in lines:
                # Remove any quotes that might have been added by to_csv
                clean_line = line.replace('"', '')
                # Split by pipe, strip whitespace from each part, then rejoin
                parts = [part.strip() for part in clean_line.split('|')]
                cleaned_lines.append(' | '.join(parts))
            
            output_text = '\n'.join(cleaned_lines)
            captured_outputs.append(f"<TABLE_START>\n{output_text}\n<TABLE_END>")
            original_print(output_text)
            return
        
        # Detect if this looks like tabular data (generic approach)
        is_table = False
        
        # Check for table patterns:
        # 1. Multiple lines with consistent spacing
        lines = output_text.split('\n')
        if len(lines) > 2:
            # Count lines that look like they have multiple columns (2+ spaces between words)
            multi_column_lines = sum(1 for line in lines if len(line.split()) > 1 and '  ' in line)
            if multi_column_lines >= 2:  # At least 2 lines with multiple columns
                is_table = True
            
            # Check for pandas DataFrame patterns like index with column names
            if any(re.search(r'^\s*\d+\s+', line) for line in lines):
                # Look for lines starting with an index number followed by spaces
                is_table = True
                
            # Look for table-like structured output with multiple rows of similar format
            if len(lines) >= 3:
                # Sample a few lines to check for consistent structure
                sample_lines = [lines[i] for i in range(min(len(lines), 5)) if i < len(lines) and lines[i].strip()]
                
                # Check for consistent whitespace patterns
                if len(sample_lines) >= 2:
                    # Get positions of whitespace groups in first line
                    whitespace_positions = []
                    for i, line in enumerate(sample_lines):
                        if not line.strip():
                            continue
                        positions = [m.start() for m in re.finditer(r'\s{2,}', line)]
                        if i == 0:
                            whitespace_positions = positions
                        elif len(positions) == len(whitespace_positions):
                            # Check if whitespace positions are roughly the same
                            is_similar = all(abs(pos - whitespace_positions[j]) <= 3 
                                            for j, pos in enumerate(positions) 
                                            if j < len(whitespace_positions))
                            if is_similar:
                                is_table = True
        
        # 2. Contains common table indicators
        if any(indicator in output_text.lower() for indicator in [
            'count', 'mean', 'std', 'min', 'max', '25%', '50%', '75%',  # Summary stats
            'correlation', 'corr',  # Correlation tables
            'coefficient', 'r-squared', 'p-value',  # Regression tables
        ]):
            is_table = True
        
        # 3. Has many decimal numbers (likely a data table)
        if output_text.count('.') > 5 and len(lines) > 2:
            is_table = True
            
        # If we have detected a table, convert space-delimited to pipe-delimited format
        if is_table:
            # Convert the table to pipe-delimited format for better parsing in frontend
            formatted_lines = []
            for line in lines:
                if not line.strip():
                    formatted_lines.append(line)  # Keep empty lines
                    continue
                
                # Split by multiple spaces and join with pipe delimiter
                parts = re.split(r'\s{2,}', line.strip())
                if parts:
                    formatted_lines.append(" | ".join(parts))
                else:
                    formatted_lines.append(line)
            
            # Use the pipe-delimited format
            output_text = "\n".join(formatted_lines)
            
            # Format and mark the output for table processing in UI
            captured_outputs.append(f"<TABLE_START>\n{output_text}\n<TABLE_END>")
        else:
            captured_outputs.append(output_text)
        
        # Also use original print for stdout capture
        original_print(*args, **kwargs)

    # Custom matplotlib capture function
    def capture_matplotlib_chart():
        """Capture current matplotlib figure as base64 encoded image"""
        try:
            fig = plt.gcf()  # Get current figure
            if fig.get_axes():  # Check if figure has any plots
                buffer = BytesIO()
                fig.savefig(buffer, format='png', dpi=150, bbox_inches='tight', 
                           facecolor='white', edgecolor='none')
                buffer.seek(0)
                img_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
                buffer.close()
                plt.close(fig)  # Close the figure to free memory
                return img_base64
            return None
        except Exception:
            return None

    # Store original plt.show function
    original_plt_show = plt.show
    
    def custom_plt_show(*args, **kwargs):
        """Custom plt.show that captures the chart instead of displaying it"""
        img_base64 = capture_matplotlib_chart()
        if img_base64:
            matplotlib_outputs.append(img_base64)
        # Don't call original show to prevent display
    
    context = {
        'pd': pd,
        'px': px,
        'go': go,
        'plt': plt,
        'plotly': plotly,
        '__builtins__': __builtins__,
        '__import__': __import__,
        'sns': sns,
        'np': np,
        'json_outputs': [],  # List to store multiple Plotly JSON outputs
        'matplotlib_outputs': [],  # List to store matplotlib chart images as base64
        'print': enhanced_print  # Replace print with our enhanced version
    }
    
    # Add matplotlib_outputs to local scope for the custom show function
    matplotlib_outputs = context['matplotlib_outputs']
    
    # Replace plt.show with our custom function
    plt.show = custom_plt_show
    
    

    # Modify code to store multiple JSON outputs
    modified_code = re.sub(
        r'(\w*_?)fig(\w*)\.show\(\)',
        r'json_outputs.append(plotly.io.to_json(\1fig\2, pretty=True))',
        modified_code
    )

    modified_code = re.sub(
        r'(\w*_?)fig(\w*)\.to_html\(.*?\)',
        r'json_outputs.append(plotly.io.to_json(\1fig\2, pretty=True))',
        modified_code
    )    
    # Remove reading the csv file if it's already in the context
    modified_code = re.sub(r"df\s*=\s*pd\.read_csv\([\"\'].*?[\"\']\).*?(\n|$)", '', modified_code)
    
    # Only match assignments at top level (not indented)
    # 1. Remove 'df = pd.DataFrame()' if it's at the top level
    modified_code = re.sub(
        r"^df\s*=\s*pd\.DataFrame\(\s*\)\s*(#.*)?$",
        '',
        modified_code,
        flags=re.MULTILINE
    )
    

    # Custom display function for DataFrames to show head + tail for large datasets
    original_repr = pd.DataFrame.__repr__
    
    def custom_df_repr(self):
        if len(self) > 15:
            # For large DataFrames, show first 10 and last 5 rows
            head_part = self.head(10)
            tail_part = self.tail(5)
            
            head_str = head_part.__repr__()
            tail_str = tail_part.__repr__()
            
            # Extract just the data rows (skip the header from tail)
            tail_lines = tail_str.split('\n')
            tail_data = '\n'.join(tail_lines[1:])  # Skip header line
            
            return f"{head_str}\n...\n{tail_data}"
        else:
            return original_repr(self)
    
    # Apply custom representation temporarily
    pd.DataFrame.__repr__ = custom_df_repr

    # If a dataframe is provided, add it to the context
    if dataframe is not None:
        context['df'] = dataframe

    # remove pd.read_csv() if it's already in the context
    modified_code = re.sub(r"pd\.read_csv\(\s*[\"\'].*?[\"\']\s*\)", '', modified_code)

    # Remove sample dataframe lines with multiple array values
    modified_code = re.sub(r"^# Sample DataFrames?.*?(\n|$)", '', modified_code, flags=re.MULTILINE | re.IGNORECASE)
    
    # Replace plt.savefig() calls with plt.show() to ensure plots are displayed
    modified_code = re.sub(r'plt\.savefig\([^)]*\)', 'plt.show()', modified_code)
    
    # Instead of removing plt.show(), keep them - they'll be handled by our custom function
    # Also handle seaborn plots that might not have explicit plt.show()
    # Add plt.show() after seaborn plot functions if not already present
    seaborn_plot_functions = [
        'sns.scatterplot', 'sns.lineplot', 'sns.barplot', 'sns.boxplot', 'sns.violinplot',
        'sns.stripplot', 'sns.swarmplot', 'sns.pointplot', 'sns.catplot', 'sns.relplot',
        'sns.displot', 'sns.histplot', 'sns.kdeplot', 'sns.ecdfplot', 'sns.rugplot',
        'sns.distplot', 'sns.jointplot', 'sns.pairplot', 'sns.FacetGrid', 'sns.PairGrid',
        'sns.heatmap', 'sns.clustermap', 'sns.regplot', 'sns.lmplot', 'sns.residplot'
    ]
    
    # Add automatic plt.show() after seaborn plots if not already present
    for func in seaborn_plot_functions:
        pattern = rf'({re.escape(func)}\([^)]*\)(?:\.[^(]*\([^)]*\))*)'
        def add_show(match):
            plot_call = match.group(1)
            # Check if the next non-empty line already has plt.show()
            return f'{plot_call}\nplt.show()'
        
        modified_code = re.sub(pattern, add_show, modified_code)
    
    # Only add df = pd.read_csv() if no dataframe was provided and the code contains pd.read_csv
    if dataframe is None and 'pd.read_csv' not in modified_code:
        modified_code = re.sub(
            r'import pandas as pd',
            r'import pandas as pd\n\n# Read Housing.csv\ndf = pd.read_csv("Housing.csv")',
            modified_code
        )

    # Identify code blocks by comments
    code_blocks = []
    current_block = []
    current_block_name = "unknown"
    
    for line in modified_code.splitlines():
        # Check if line contains a block identifier comment
        block_match = re.match(r'^# ([a-zA-Z_]+)_agent code start', line)
        if block_match:
            # If we had a previous block, save it
            if current_block:
                code_blocks.append((current_block_name, '\n'.join(current_block)))
            # Start a new block
            current_block_name = block_match.group(1)
            current_block = []
        else:
            current_block.append(line)
    
    # Add the last block if it exists
    if current_block:
        code_blocks.append((current_block_name, '\n'.join(current_block)))
    
    # Execute each code block separately
    all_outputs = []
    for block_name, block_code in code_blocks:
        try:
            # Clear captured outputs for each block
            captured_outputs.clear()
            
            with stdoutIO() as s:
                exec(block_code, context)  # Execute the block
            
            # Get both stdout and our enhanced captured outputs
            stdout_output = s.getvalue()
            
            # Combine outputs, preferring our enhanced format when available
            if captured_outputs:
                combined_output = '\n'.join(captured_outputs)
            else:
                combined_output = stdout_output
            
            all_outputs.append((block_name, combined_output, None))  # None means no error
        except Exception as e:
            # Reset pandas options in case of error
            pd.reset_option('display.max_columns')
            pd.reset_option('display.max_rows')
            pd.reset_option('display.width')
            pd.reset_option('display.max_colwidth')
            pd.reset_option('display.expand_frame_repr')
            
            # Restore original DataFrame representation in case of error
            pd.DataFrame.__repr__ = original_repr
            
            # Restore original plt.show
            plt.show = original_plt_show
            
            error_traceback = traceback.format_exc()
            
            # Extract error message and error type
            error_message = str(e)
            error_type = type(e).__name__
            error_lines = error_traceback.splitlines()
            
            # Format error with context of the actual code
            formatted_error = f"Error in {block_name}_agent: {error_message}\n"
            
            # Add first few lines of traceback
            first_lines = error_lines[:3]
            formatted_error += "\n".join(first_lines) + "\n"
            
            # Parse problem variables/values from the error message
            problem_vars = []
            
            # Look for common error patterns
            if "not in index" in error_message:
                # Extract column names for 'not in index' errors
                column_match = re.search(r"\['([^']+)'(?:, '([^']+)')*\] not in index", error_message)
                if column_match:
                    problem_vars = [g for g in column_match.groups() if g is not None]
                    
                    # Look for DataFrame accessing operations and list/variable definitions
                    potential_lines = []
                    code_lines = block_code.splitlines()
                    
                    # First, find all DataFrame column access patterns
                    df_access_patterns = []
                    for i, line in enumerate(code_lines):
                        # Find DataFrame variables from patterns like "df_name[...]" or "df_name.loc[...]"
                        df_matches = re.findall(r'(\w+)(?:\[|\.)(?:loc|iloc|columns|at|iat|\.select)', line)
                        for df_var in df_matches:
                            df_access_patterns.append((i, df_var))
                        
                        # Find variables that might contain column lists
                        for var in problem_vars:
                            if re.search(r'\b(numeric_columns|categorical_columns|columns|features|cols)\b', line):
                                potential_lines.append(i)
                    
                    # Identify the most likely problematic lines
                    if df_access_patterns:
                        for i, df_var in df_access_patterns:
                            if any(re.search(rf'{df_var}\[.*?\]', line) for line in code_lines):
                                potential_lines.append(i)
                    
                    # If no specific lines found yet, look for any DataFrame operations
                    if not potential_lines:
                        for i, line in enumerate(code_lines):
                            if re.search(r'(?:corr|drop|groupby|pivot|merge|join|concat|apply|map|filter|loc|iloc)\(', line):
                                potential_lines.append(i)
                    
                    # Sort and deduplicate
                    potential_lines = sorted(set(potential_lines))
            elif "name" in error_message and "is not defined" in error_message:
                # Extract variable name for NameError
                var_match = re.search(r"name '([^']+)' is not defined", error_message)
                if var_match:
                    problem_vars = [var_match.group(1)]
            elif "object has no attribute" in error_message:
                # Extract attribute name for AttributeError
                attr_match = re.search(r"'([^']+)' object has no attribute '([^']+)'", error_message)
                if attr_match:
                    problem_vars = [f"{attr_match.group(1)}.{attr_match.group(2)}"]
            
            # Scan code for lines containing the problem variables
            if problem_vars:
                formatted_error += "\nProblem likely in these lines:\n"
                code_lines = block_code.splitlines()
                problem_lines = []
                
                # First try direct variable references
                direct_matches = False
                for i, line in enumerate(code_lines):
                    if any(var in line for var in problem_vars):
                        direct_matches = True
                        # Get line and its context (1 line before and after)
                        start_idx = max(0, i-1)
                        end_idx = min(len(code_lines), i+2)
                        
                        for j in range(start_idx, end_idx):
                            line_prefix = f"{j+1}: "
                            if j == i:  # The line with the problem variable
                                problem_lines.append(f"{line_prefix}>>> {code_lines[j]} <<<")
                            else:
                                problem_lines.append(f"{line_prefix}{code_lines[j]}")
                        
                        problem_lines.append("") # Empty line between sections
                
                # If no direct matches found but we identified potential problematic lines for DataFrame issues
                if not direct_matches and "not in index" in error_message and 'potential_lines' in locals():
                    for i in potential_lines:
                        start_idx = max(0, i-1)
                        end_idx = min(len(code_lines), i+2)
                        
                        for j in range(start_idx, end_idx):
                            line_prefix = f"{j+1}: "
                            if j == i:
                                problem_lines.append(f"{line_prefix}>>> {code_lines[j]} <<<")
                            else:
                                problem_lines.append(f"{line_prefix}{code_lines[j]}")
                        
                        problem_lines.append("") # Empty line between sections
                
                if problem_lines:
                    formatted_error += "\n".join(problem_lines)
                else:
                    # Special message for column errors when we can't find the exact reference
                    if "not in index" in error_message:
                        formatted_error += (f"Unable to locate direct reference to columns: {', '.join(problem_vars)}\n"
                                           f"Check for variables that might contain these column names (like numeric_columns, "
                                           f"categorical_columns, etc.)\n")
                    else:
                        formatted_error += f"Unable to locate lines containing: {', '.join(problem_vars)}\n"
            else:
                # If we couldn't identify specific variables, check for line numbers in traceback
                for line in reversed(error_lines):  # Search from the end of traceback
                    # Look for user code references in the traceback
                    if ', line ' in line and '<module>' in line:
                        try:
                            line_num = int(re.search(r', line (\d+)', line).group(1))
                            code_lines = block_code.splitlines()
                            if 0 < line_num <= len(code_lines):
                                line_idx = line_num - 1
                                start_idx = max(0, line_idx-2)
                                end_idx = min(len(code_lines), line_idx+3)
                                
                                formatted_error += "\nProblem at this location:\n"
                                for i in range(start_idx, end_idx):
                                    line_prefix = f"{i+1}: "
                                    if i == line_idx:
                                        formatted_error += f"{line_prefix}>>> {code_lines[i]} <<<\n"
                                    else:
                                        formatted_error += f"{line_prefix}{code_lines[i]}\n"
                                break
                        except (ValueError, AttributeError, IndexError):
                            pass
            
            # Add the last few lines of the traceback
            formatted_error += "\nFull error details:\n"
            last_lines = error_lines[-3:]
            formatted_error += "\n".join(last_lines)
            
            all_outputs.append((block_name, None, formatted_error))
    
    # Reset pandas options after execution
    pd.reset_option('display.max_columns')
    pd.reset_option('display.max_rows')
    pd.reset_option('display.width')
    pd.reset_option('display.max_colwidth')
    pd.reset_option('display.expand_frame_repr')
    
    # Restore original DataFrame representation
    pd.DataFrame.__repr__ = original_repr
    
    # Restore original plt.show
    plt.show = original_plt_show
    
    # Compile all outputs and errors
    output_text = ""
    json_outputs = context.get('json_outputs', [])
    matplotlib_outputs = context.get('matplotlib_outputs', [])
    error_found = False
    
    for block_name, output, error in all_outputs:
        if error:
            output_text += f"\n\n=== ERROR IN {block_name.upper()}_AGENT ===\n{error}\n"
            error_found = True
        elif output:
            output_text += f"\n\n=== OUTPUT FROM {block_name.upper()}_AGENT ===\n{output}\n"
    
    if error_found:
        return output_text, [], []
    else:
        return output_text, json_outputs, matplotlib_outputs
    
    
def format_plan_instructions(plan_instructions):
    """
    Format any plan instructions (JSON string or dict) into markdown sections per agent.
    """
    # Parse input into a dict

    if "basic_qa_agent" in str(plan_instructions):
        return "**Non-Data Request**: Please ask a data related query, don't waste credits!"


    try:
        if isinstance(plan_instructions, str):
            try:
                instructions = json.loads(plan_instructions)
            except json.JSONDecodeError as e:
                # Try to clean the string if it's not valid JSON
                cleaned_str = plan_instructions.strip()
                if cleaned_str.startswith("'") and cleaned_str.endswith("'"):
                    cleaned_str = cleaned_str[1:-1]
                try:
                    instructions = json.loads(cleaned_str)
                except json.JSONDecodeError:
                    raise ValueError(f"Invalid JSON format in plan instructions: {str(e)}")
        elif isinstance(plan_instructions, dict):
            instructions = plan_instructions
        else:
            raise TypeError(f"Unsupported plan instructions type: {type(plan_instructions)}")
    except Exception as e:
        raise ValueError(f"Error processing plan instructions: {str(e)}")
    # logger.log_message(f"Plan instructions: {instructions}", level=logging.INFO)



    markdown_lines = []
    for agent, content in instructions.items():
        if agent != 'basic_qa_agent':
            agent_title = agent.replace('_', ' ').title()
            markdown_lines.append(f"#### {agent_title}")
            if isinstance(content, dict):
                # Handle 'create' key
                create_vals = content.get('create', [])
                if create_vals:
                    markdown_lines.append(f"- **Create**:")
                    for item in create_vals:
                        markdown_lines.append(f"  - {item}")
                else:
                    markdown_lines.append(f"- **Create**: None")
    
                # Handle 'use' key
                use_vals = content.get('use', [])
                if use_vals:
                    markdown_lines.append(f"- **Use**:")
                    for item in use_vals:
                        markdown_lines.append(f"  - {item}")
                else:
                    markdown_lines.append(f"- **Use**: None")
    
                # Handle 'instruction' key
                instr = content.get('instruction')
                if isinstance(instr, str) and instr:
                    markdown_lines.append(f"- **Instruction**: {instr}")
                else:
                    markdown_lines.append(f"- **Instruction**: None")
            else:
                # Fallback for non-dict content
                markdown_lines.append(f"- {content}")
            markdown_lines.append("")  # blank line between agents
        else:
            markdown_lines.append(f"**Non-Data Request**: {content.get('instruction')}")

    return "\n".join(markdown_lines).strip()
    

def format_complexity(instructions):
    markdown_lines = []
    # Extract complexity from various possible locations in the structure
    if isinstance(instructions, dict):
        # Case 1: Direct complexity field
        if 'complexity' in instructions:
            complexity = instructions['complexity']
        # Case 2: Complexity in 'plan' object
        elif 'plan' in instructions and isinstance(instructions['plan'], dict):
            if 'complexity' in instructions['plan']:
                complexity = instructions['plan']['complexity']
        else:
            complexity = "unrelated"
    
    if 'plan' in instructions and isinstance(instructions['plan'], str) and "basic_qa_agent" in instructions['plan']:
        complexity = "unrelated"
    
    if complexity:
        # Pink color scheme variations
        color_map = {
            "unrelated": "#FFB6B6",  # Light pink
            "basic": "#FF9E9E",      # Medium pink
            "intermediate": "#FF7F7F", # Main pink
            "advanced": "#FF5F5F"    # Dark pink
        }
        
        indicator_map = {
            "unrelated": "β—‹",
            "basic": "●",
            "intermediate": "●●",
            "advanced": "●●●"
        }
        
        color = color_map.get(complexity.lower(), "#FFB6B6")  # Default to light pink
        indicator = indicator_map.get(complexity.lower(), "β—‹")
        
        # Slightly larger display with pink styling
        markdown_lines.append(f"<div style='color: {color}; border: 2px solid {color}; padding: 2px 8px; border-radius: 12px; display: inline-block; font-size: 14.4px;'>{indicator} {complexity}</div>\n")

        return "\n".join(markdown_lines).strip()    


def format_response_to_markdown(api_response, agent_name = None, dataframe=None):
    try:
        markdown = []
        # logger.log_message(f"API response for {agent_name} at {time.strftime('%Y-%m-%d %H:%M:%S')}: {api_response}", level=logging.INFO)

        if isinstance(api_response, dict):
            for key in api_response:
                if "error" in api_response[key] and "litellm.RateLimitError" in api_response[key]['error'].lower():
                    return f"**Error**: Rate limit exceeded. Please try switching models from the settings."
                # You can add more checks here if needed for other keys
                       
        # Handle error responses
        if isinstance(api_response, dict) and "error" in api_response:
            return f"**Error**: {api_response['error']}"
        if "response" in api_response and isinstance(api_response['response'], str):
            if any(err in api_response['response'].lower() for err in ["auth", "api", "lm"]):
                return "**Error**: Authentication failed. Please check your API key in settings and try again."
            if "model" in api_response['response'].lower():
                return "**Error**: Model configuration error. Please verify your model selection in settings."

        for agent, content in api_response.items():
            agent = agent.split("__")[0] if "__" in agent else agent
            if "memory" in agent or not content:
                continue
                
            if "complexity" in content:
                markdown.append(f"{format_complexity(content)}\n")
                
            markdown.append(f"\n## {agent.replace('_', ' ').title()}\n")
            
            if agent == "analytical_planner":
                logger.log_message(f"Analytical planner content: {content}", level=logging.INFO)
                if 'plan_desc' in content:
                    markdown.append(f"### Reasoning\n{content['plan_desc']}\n")
                if 'plan_instructions' in content:
                    markdown.append(f"{format_plan_instructions(content['plan_instructions'])}\n")
                else:
                    markdown.append(f"### Reasoning\n{content['rationale']}\n")
            else:  
                if "rationale" in content:
                    markdown.append(f"### Reasoning\n{content['rationale']}\n")

            if 'code' in content:
                markdown.append(f"### Code Implementation\n{format_code_backticked_block(content['code'])}\n")
            if 'answer' in content:
                markdown.append(f"### Answer\n{content['answer']}\n Please ask a query about the data")
            if 'summary' in content:
                import re
                summary_text = content['summary']
                summary_text = re.sub(r'```python\n(.*?)\n```', '', summary_text, flags=re.DOTALL)

                markdown.append("### Summary\n")

                # Extract pre-list intro, bullet points, and post-list text
                intro_match = re.split(r'\(\d+\)', summary_text, maxsplit=1)
                if len(intro_match) > 1:
                    intro_text = intro_match[0].strip()
                    rest_text = "(1)" + intro_match[1]  # reattach for bullet parsing
                else:
                    intro_text = summary_text.strip()
                    rest_text = ""

                if intro_text:
                    markdown.append(f"{intro_text}\n")

                # Split bullets at numbered items like (1)...(8)
                bullets = re.split(r'\(\d+\)', rest_text)
                bullets = [b.strip(" ,.\n") for b in bullets if b.strip()]

                # Check for post-list content (anything after the last number)
                for i, bullet in enumerate(bullets):
                    markdown.append(f"* {bullet}\n")




            if 'refined_complete_code' in content and 'summary' in content:
                try:
                    if content['refined_complete_code'] is not None and content['refined_complete_code'] != "":
                        clean_code = format_code_block(content['refined_complete_code']) 
                        markdown_code = format_code_backticked_block(content['refined_complete_code'])
                        output, json_outputs, matplotlib_outputs = execute_code_from_markdown(clean_code, dataframe)
                    elif "```python" in content['summary']:
                        clean_code = format_code_block(content['summary'])
                        markdown_code = format_code_backticked_block(content['summary'])
                        output, json_outputs, matplotlib_outputs = execute_code_from_markdown(clean_code, dataframe)
                except Exception as e:
                    logger.log_message(f"Error in execute_code_from_markdown: {str(e)}", level=logging.ERROR)
                    markdown_code = f"**Error**: {str(e)}"
                    output = None
                    json_outputs = []
                    matplotlib_outputs = []
                    # continue
                
                if markdown_code is not None:
                    markdown.append(f"### Refined Complete Code\n{markdown_code}\n")
                
                if output:
                    markdown.append("### Execution Output\n")
                    markdown.append(f"```output\n{output}\n```\n")
                    
                if json_outputs:
                    markdown.append("### Plotly JSON Outputs\n")
                    for idx, json_output in enumerate(json_outputs):
                        markdown.append(f"```plotly\n{json_output}\n```\n")
                        
                if matplotlib_outputs:
                    markdown.append("### Matplotlib/Seaborn Charts\n")
                    for idx, img_base64 in enumerate(matplotlib_outputs):
                        markdown.append(f"```matplotlib\n{img_base64}\n```\n")
            # if agent_name is not None:  
            #     if f"memory_{agent_name}" in api_response:
            #         markdown.append(f"### Memory\n{api_response[f'memory_{agent_name}']}\n")

    except Exception as e:
        logger.log_message(f"Error in format_response_to_markdown: {str(e)}", level=logging.ERROR)
        return f"{str(e)}"
        
    # logger.log_message(f"Generated markdown content for agent '{agent_name}' at {time.strftime('%Y-%m-%d %H:%M:%S')}: {markdown}, length: {len(markdown)}", level=logging.INFO)
    
    if not markdown or len(markdown) <= 1:
        logger.log_message(
            f"Invalid markdown content for agent '{agent_name}' at {time.strftime('%Y-%m-%d %H:%M:%S')}: "
            f"Content: '{markdown}', Type: {type(markdown)}, Length: {len(markdown) if markdown else 0}, "
            f"API Response: {api_response}",
            level=logging.ERROR
        )
        return " "
        
    return '\n'.join(markdown)


# Example usage with dummy data
if __name__ == "__main__":
    sample_response = {
        "code_combiner_agent": {
            "reasoning": "Sample reasoning for multiple charts.",
            "refined_complete_code": """
```python
import plotly.express as px
import pandas as pd

# Sample Data
df = pd.DataFrame({'Category': ['A', 'B', 'C'], 'Values': [10, 20, 30]})

# First Chart
fig = px.bar(df, x='Category', y='Values', title='Bar Chart')
fig.show()

# Second Chart
fig2 = px.pie(df, values='Values', names='Category', title='Pie Chart')
fig2.show()
```
"""
        }
    }

    formatted_md = format_response_to_markdown(sample_response)