Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,461 Bytes
b05d409 7643a03 b05d409 7643a03 b05d409 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# Auto-Analyst Backend - Getting Started Guide
## π― Overview
This guide will help you set up and understand the Auto-Analyst backend system. Auto-Analyst is a multi-agent AI platform that orchestrates specialized agents for comprehensive data analysis.
## ποΈ Core Concepts
### 1. **Multi-Agent System**
The platform uses specialized AI agents:
- **Preprocessing Agent**: Data cleaning and preparation
- **Statistical Analytics Agent**: Statistical analysis and insights
- **Machine Learning Agent**: Scikit-learn based modeling
- **Data Visualization Agent**: Chart and plot generation
### 2. **Template System**
- **Individual Agents**: Single-purpose agents for specific tasks
- **Planner Agents**: Multi-agent coordination for complex workflows
- **User Templates**: Customizable agent preferences
- **Default vs Premium**: Core agents available to all users
### 3. **Session Management**
- Session-based user tracking
- Shared DataFrame context between agents
- Conversation history and code execution tracking
### 4. **Deep Analysis System**
- Multi-step analysis workflow (questions β planning β execution β synthesis)
- Streaming progress updates
- HTML report generation
## π Quick Start
### 1. Installation
```bash
# Clone and navigate to backend
cd Auto-Analyst-CS/auto-analyst-backend
# Create virtual environment
python -m venv venv
source venv/bin/activate # Linux/Mac
# or
venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txt
```
### 2. Environment Variables
Create `.env` file with:
```env
# Database
DATABASE_URL=sqlite:///./auto_analyst.db # For development
# DATABASE_URL=postgresql://user:pass@host:port/db # For production
# AI Models
ANTHROPIC_API_KEY=your_anthropic_key_here
OPENAI_API_KEY=your_openai_key_here
# Authentication (optional)
ADMIN_API_KEY=your_admin_key_here
```
### 3. Database Initialization
```bash
# Initialize database and default agents
python -c "
from src.db.init_db import init_db
init_db()
print('β
Database initialized successfully')
"
```
### 4. Start the Server
```bash
# Development server
python app.py
# Or with uvicorn
uvicorn app:app --reload --host 0.0.0.0 --port 8000
```
### 5. Verify Setup
Visit: `http://localhost:8000/docs` for interactive API documentation
## π Key Files to Understand
### Core Application Files
1. **`app.py`** - Main FastAPI application and core endpoints
2. **`src/agents/agents.py`** - Agent definitions and orchestration
3. **`src/agents/deep_agents.py`** - Deep analysis system
4. **`src/db/schemas/models.py`** - Database models
5. **`src/managers/chat_manager.py`** - Chat and session management
### Route Files (API Endpoints)
- **`src/routes/session_routes.py`** - File uploads, sessions, authentication
- **`src/routes/chat_routes.py`** - Chat and messaging
- **`src/routes/code_routes.py`** - Code execution and processing
- **`src/routes/templates_routes.py`** - Agent template management
- **`src/routes/deep_analysis_routes.py`** - Deep analysis reports
- **`src/routes/analytics_routes.py`** - Usage analytics and monitoring
### Configuration Files
- **`agents_config.json`** - Agent and template definitions
- **`requirements.txt`** - Python dependencies
- **`alembic.ini`** - Database migration configuration
## π§ Development Workflow
### 1. Adding New Agents
```python
# 1. Define agent signature in src/agents/agents.py
class new_agent(dspy.Signature):
"""Agent description"""
goal = dspy.InputField(desc="Analysis goal")
dataset = dspy.InputField(desc="Dataset info")
result = dspy.OutputField(desc="Analysis result")
# 2. Add to agents_config.json
{
"template_name": "new_agent",
"description": "Agent description",
"variant_type": "both",
"is_premium": false,
"usage_count": 0
}
# 3. Register in agent loading system
```
### 2. Adding New Endpoints
```python
# 1. Create route in src/routes/feature_routes.py
from fastapi import APIRouter
router = APIRouter(prefix="/feature", tags=["feature"])
@router.get("/endpoint")
async def new_endpoint():
return {"message": "Hello"}
# 2. Register in app.py
from src.routes.feature_routes import router as feature_router
app.include_router(feature_router)
```
### 3. Database Changes
```bash
# 1. Modify models in src/db/schemas/models.py
# 2. Create migration
alembic revision --autogenerate -m "description"
# 3. Apply migration
alembic upgrade head
```
## π§ͺ Testing Your Changes
### 1. Test API Endpoints
```bash
# Use the interactive docs
open http://localhost:8000/docs
# Or use curl
curl -X GET "http://localhost:8000/health"
```
### 2. Test Agent System
```python
# Test individual agent
python -c "
from src.agents.agents import preprocessing_agent
import dspy
dspy.LM('anthropic/claude-sonnet-4-20250514')
agent = dspy.ChainOfThought(preprocessing_agent)
result = agent(goal='clean data', dataset='test data')
print(result)
"
```
### 3. Test Database Operations
```python
# Test database
python -c "
from src.db.init_db import session_factory
from src.db.schemas.models import AgentTemplate
session = session_factory()
templates = session.query(AgentTemplate).all()
print(f'Found {len(templates)} templates')
session.close()
"
```
## π Common Development Tasks
### Adding a New Feature
1. **Plan the Feature**: Define requirements and API design
2. **Database Changes**: Add new models if needed
3. **Create Routes**: Add API endpoints in `src/routes/`
4. **Business Logic**: Add managers in `src/managers/` if complex
5. **Documentation**: Update relevant `.md` files
6. **Testing**: Test endpoints and integration
### Debugging Issues
1. **Check Logs**: Application logs show detailed error information
2. **Database State**: Verify data with database queries
3. **API Testing**: Use `/docs` interface for endpoint testing
4. **Agent Behavior**: Test individual agents separately
### Performance Optimization
1. **Database Queries**: Use SQLAlchemy query optimization
2. **Agent Execution**: Implement async patterns for agent orchestration
3. **Resource Management**: Monitor memory usage for large datasets
## π System Architecture Overview
```mermaid
graph TD
A[Frontend Request] --> B[FastAPI Router]
B --> C[Route Handler]
C --> D[Manager Layer]
D --> E[Database Layer]
D --> F[Agent System]
F --> G[AI Models]
G --> H[Code Generation]
H --> I[Execution Environment]
I --> J[Results Processing]
J --> K[Response]
subgraph "Agent Orchestration"
F1[Individual Agents]
F2[Planner Module]
F3[Deep Analysis]
F1 --> F2
F2 --> F3
end
F --> F1
```
## π Template Integration
The system uses **active user templates** for agent selection:
### Default Agents (Always Available)
- `preprocessing_agent` (individual & planner variants)
- `statistical_analytics_agent` (individual & planner variants)
- `sk_learn_agent` (individual & planner variants)
- `data_viz_agent` (individual & planner variants)
### Template Loading Logic
1. **Individual Agent Execution** (`@agent_name`): Loads ALL available templates
2. **Planner Execution**: Loads user's enabled templates (max 10 for performance)
3. **Deep Analysis**: Uses user's active template preferences
4. **Fallback**: Uses 4 core agents if no user preferences found
This architecture ensures users can leverage their preferred agents while maintaining system performance and reliability. |