File size: 20,138 Bytes
b05d409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
# Auto-Analyst Backend Development Workflow

## 🎯 Development Philosophy

The Auto-Analyst backend follows modern Python development practices with emphasis on:
- **Modularity**: Clear separation of concerns across components
- **Async-First**: Non-blocking operations for scalability
- **Type Safety**: Comprehensive type hints and validation
- **Documentation**: Self-documenting code and comprehensive docs
- **Testing**: Robust testing at multiple levels
- **Performance**: Optimized for real-world usage patterns

## πŸ—οΈ Code Organization Principles

### 1. **Directory Structure Standards**

```
src/
β”œβ”€β”€ agents/           # AI agent implementations
β”‚   β”œβ”€β”€ agents.py    # Core agent definitions
β”‚   β”œβ”€β”€ deep_agents.py # Deep analysis system
β”‚   └── retrievers/  # Information retrieval components
β”œβ”€β”€ db/              # Database layer
β”‚   β”œβ”€β”€ init_db.py   # Database initialization
β”‚   └── schemas/     # SQLAlchemy models
β”œβ”€β”€ managers/        # Business logic layer
β”‚   β”œβ”€β”€ chat_manager.py    # Chat operations
β”‚   β”œβ”€β”€ ai_manager.py      # AI model management
β”‚   └── session_manager.py # Session lifecycle
β”œβ”€β”€ routes/          # FastAPI route handlers
β”‚   β”œβ”€β”€ core_routes.py     # Core functionality
β”‚   β”œβ”€β”€ chat_routes.py     # Chat endpoints
β”‚   └── [feature]_routes.py # Feature-specific routes
β”œβ”€β”€ utils/           # Shared utilities
β”‚   β”œβ”€β”€ logger.py    # Centralized logging
β”‚   └── helpers.py   # Common functions
└── schemas/         # Pydantic models
    β”œβ”€β”€ chat_schemas.py    # Chat data models
    └── [feature]_schemas.py # Feature schemas
```

### 2. **Import Organization**

```python
# Standard library imports
import asyncio
import json
from datetime import datetime
from typing import List, Optional, Dict, Any

# Third-party imports
import dspy
import pandas as pd
from fastapi import APIRouter, Depends, HTTPException
from pydantic import BaseModel
from sqlalchemy.orm import Session

# Local imports
from src.db.init_db import session_factory
from src.db.schemas.models import User, Chat
from src.utils.logger import Logger
from src.managers.chat_manager import ChatManager
```

## πŸ› οΈ Development Patterns

### 1. **Agent Development Pattern**

```python
# 1. Define DSPy Signature
class new_analysis_agent(dspy.Signature):
    """
    Comprehensive docstring explaining:
    - Agent purpose and capabilities
    - Input requirements and formats
    - Expected output format
    - Usage examples
    """
    goal = dspy.InputField(desc="Clear description of analysis objective")
    dataset = dspy.InputField(desc="Dataset structure and content description")
    plan_instructions = dspy.InputField(desc="Execution plan from planner")
    
    summary = dspy.OutputField(desc="Natural language summary of analysis")
    code = dspy.OutputField(desc="Executable Python code for analysis")

# 2. Add to Agent Configuration
# In agents_config.json:
{
  "template_name": "new_analysis_agent",
  "description": "Performs specialized analysis on datasets",
  "variant_type": "both",  # individual, planner, or both
  "is_premium": false,
  "usage_count": 0,
  "icon_url": "analysis.svg"
}

# 3. Register in Agent System
# In agents.py, add to the appropriate loading functions
```

### 2. **Route Development Pattern**

```python
# 1. Create route file: src/routes/feature_routes.py
from fastapi import APIRouter, Depends, HTTPException, Query
from pydantic import BaseModel
from typing import List, Optional
from src.db.init_db import session_factory
from src.db.schemas.models import FeatureModel
from src.utils.logger import Logger

logger = Logger("feature_routes", see_time=True, console_log=False)
router = APIRouter(prefix="/feature", tags=["feature"])

# 2. Define Pydantic schemas
class FeatureCreate(BaseModel):
    name: str
    description: Optional[str] = None
    
class FeatureResponse(BaseModel):
    id: int
    name: str
    description: Optional[str]
    created_at: datetime

# 3. Implement endpoints with proper error handling
@router.post("/", response_model=FeatureResponse)
async def create_feature(feature: FeatureCreate):
    try:
        session = session_factory()
        try:
            new_feature = FeatureModel(
                name=feature.name,
                description=feature.description
            )
            session.add(new_feature)
            session.commit()
            session.refresh(new_feature)
            
            return FeatureResponse(
                id=new_feature.id,
                name=new_feature.name,
                description=new_feature.description,
                created_at=new_feature.created_at
            )
            
        except Exception as e:
            session.rollback()
            logger.log_message(f"Error creating feature: {str(e)}", level=logging.ERROR)
            raise HTTPException(status_code=500, detail=f"Failed to create feature: {str(e)}")
        finally:
            session.close()
            
    except Exception as e:
        logger.log_message(f"Error in create_feature: {str(e)}", level=logging.ERROR)
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

# 4. Register in app.py
from src.routes.feature_routes import router as feature_router
app.include_router(feature_router)
```

### 3. **Database Model Pattern**

```python
# In src/db/schemas/models.py
from sqlalchemy import Column, Integer, String, DateTime, Boolean, Text, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from datetime import datetime, timezone

Base = declarative_base()

class NewModel(Base):
    __tablename__ = "new_models"
    
    # Primary key
    id = Column(Integer, primary_key=True, autoincrement=True)
    
    # Required fields
    name = Column(String(255), nullable=False, unique=True)
    
    # Optional fields
    description = Column(Text, nullable=True)
    is_active = Column(Boolean, default=True, nullable=False)
    
    # Timestamps
    created_at = Column(DateTime, default=lambda: datetime.now(timezone.utc), nullable=False)
    updated_at = Column(DateTime, default=lambda: datetime.now(timezone.utc), onupdate=lambda: datetime.now(timezone.utc), nullable=False)
    
    # Foreign keys
    user_id = Column(Integer, ForeignKey("users.user_id"), nullable=True)
    
    # Relationships
    user = relationship("User", back_populates="new_models")
    
    def __repr__(self):
        return f"<NewModel(id={self.id}, name='{self.name}')>"

# Update User model to include back reference
class User(Base):
    # ... existing fields ...
    new_models = relationship("NewModel", back_populates="user")
```

### 4. **Manager Pattern**

```python
# In src/managers/feature_manager.py
from typing import List, Optional, Dict, Any
from sqlalchemy.orm import Session
from src.db.schemas.models import FeatureModel
from src.utils.logger import Logger

logger = Logger("feature_manager", see_time=True, console_log=False)

class FeatureManager:
    """
    Manages business logic for feature operations.
    Separates complex business logic from route handlers.
    """
    
    def __init__(self, session: Session):
        self.session = session
    
    async def create_feature(self, name: str, description: Optional[str] = None) -> FeatureModel:
        """Create a new feature with validation and business logic."""
        try:
            # Validation
            if not name or len(name.strip()) == 0:
                raise ValueError("Feature name cannot be empty")
            
            # Check for duplicates
            existing = self.session.query(FeatureModel).filter_by(name=name).first()
            if existing:
                raise ValueError(f"Feature with name '{name}' already exists")
            
            # Create feature
            feature = FeatureModel(name=name, description=description)
            self.session.add(feature)
            self.session.commit()
            self.session.refresh(feature)
            
            logger.log_message(f"Created feature: {name}", level=logging.INFO)
            return feature
            
        except Exception as e:
            self.session.rollback()
            logger.log_message(f"Error creating feature: {str(e)}", level=logging.ERROR)
            raise
    
    async def get_features(self, active_only: bool = True) -> List[FeatureModel]:
        """Retrieve features with optional filtering."""
        try:
            query = self.session.query(FeatureModel)
            if active_only:
                query = query.filter(FeatureModel.is_active == True)
            
            features = query.order_by(FeatureModel.created_at.desc()).all()
            return features
            
        except Exception as e:
            logger.log_message(f"Error retrieving features: {str(e)}", level=logging.ERROR)
            raise
```

## πŸ“‹ Code Quality Standards

### 1. **Type Hints and Documentation**

```python
from typing import List, Optional, Dict, Any, Union
from datetime import datetime

async def process_analysis_data(
    data: pd.DataFrame,
    analysis_type: str,
    user_id: Optional[int] = None,
    options: Dict[str, Any] = None
) -> Dict[str, Union[str, List[Any], bool]]:
    """
    Process analysis data with specified parameters.
    
    Args:
        data: Input DataFrame containing the data to analyze
        analysis_type: Type of analysis to perform ("statistical", "ml", "viz")
        user_id: Optional user ID for tracking and personalization
        options: Additional options for analysis configuration
        
    Returns:
        Dictionary containing:
        - status: "success" or "error"
        - result: Analysis results or error message
        - metadata: Additional information about the analysis
        
    Raises:
        ValueError: If analysis_type is not supported
        DataError: If data format is invalid
        
    Example:
        >>> data = pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
        >>> result = await process_analysis_data(data, "statistical")
        >>> print(result["status"])
        "success"
    """
    if options is None:
        options = {}
    
    # Implementation...
    return {"status": "success", "result": [], "metadata": {}}
```

### 2. **Error Handling Patterns**

```python
# Comprehensive error handling with logging and user-friendly messages
async def safe_operation(data: Any) -> Dict[str, Any]:
    """
    Template for safe operations with comprehensive error handling.
    """
    try:
        # Validation
        if not data:
            raise ValueError("Data cannot be empty")
        
        # Main operation
        result = await perform_operation(data)
        
        # Success logging
        logger.log_message("Operation completed successfully", level=logging.INFO)
        return {"success": True, "data": result}
        
    except ValueError as e:
        # Input validation errors
        logger.log_message(f"Validation error: {str(e)}", level=logging.WARNING)
        return {"success": False, "error": "Invalid input", "details": str(e)}
        
    except ConnectionError as e:
        # External service errors
        logger.log_message(f"Connection error: {str(e)}", level=logging.ERROR)
        return {"success": False, "error": "Service unavailable", "details": "Please try again later"}
        
    except Exception as e:
        # Unexpected errors
        logger.log_message(f"Unexpected error in safe_operation: {str(e)}", level=logging.ERROR)
        return {"success": False, "error": "Internal error", "details": "Please contact support"}
```

### 3. **Async/Await Best Practices**

```python
import asyncio
from typing import List, Coroutine

# Proper async function definition
async def async_agent_execution(agents: List[str], query: str) -> List[Dict[str, Any]]:
    """Execute multiple agents concurrently."""
    
    # Create coroutines
    tasks = [
        execute_single_agent(agent, query) 
        for agent in agents
    ]
    
    # Execute concurrently with error handling
    results = []
    for task in asyncio.as_completed(tasks):
        try:
            result = await task
            results.append(result)
        except Exception as e:
            logger.log_message(f"Agent execution failed: {e}", level=logging.ERROR)
            results.append({"error": str(e)})
    
    return results

# Database operations with proper session management
async def async_database_operation(session: Session) -> Any:
    """Template for async database operations."""
    try:
        # Use asyncio.to_thread for CPU-bound database operations
        result = await asyncio.to_thread(
            lambda: session.query(Model).filter(...).all()
        )
        return result
    except Exception as e:
        session.rollback()
        raise
    finally:
        session.close()
```

## πŸ§ͺ Testing Patterns

### 1. **Unit Testing Structure**

```python
# tests/test_feature_manager.py
import pytest
from unittest.mock import Mock, patch
from src.managers.feature_manager import FeatureManager
from src.db.schemas.models import FeatureModel

class TestFeatureManager:
    """Test cases for FeatureManager class."""
    
    @pytest.fixture
    def mock_session(self):
        """Create a mock database session."""
        return Mock()
    
    @pytest.fixture
    def feature_manager(self, mock_session):
        """Create FeatureManager instance with mock session."""
        return FeatureManager(mock_session)
    
    async def test_create_feature_success(self, feature_manager, mock_session):
        """Test successful feature creation."""
        # Arrange
        mock_session.query.return_value.filter_by.return_value.first.return_value = None
        
        # Act
        result = await feature_manager.create_feature("test_feature", "Test description")
        
        # Assert
        assert isinstance(result, FeatureModel)
        mock_session.add.assert_called_once()
        mock_session.commit.assert_called_once()
    
    async def test_create_feature_duplicate_name(self, feature_manager, mock_session):
        """Test feature creation with duplicate name."""
        # Arrange
        existing_feature = FeatureModel(name="test_feature")
        mock_session.query.return_value.filter_by.return_value.first.return_value = existing_feature
        
        # Act & Assert
        with pytest.raises(ValueError, match="already exists"):
            await feature_manager.create_feature("test_feature")
```

### 2. **Integration Testing**

```python
# tests/integration/test_api_endpoints.py
import pytest
from fastapi.testclient import TestClient
from src.app import app
from src.db.init_db import session_factory

client = TestClient(app)

class TestFeatureAPI:
    """Integration tests for feature API endpoints."""
    
    def test_create_feature_endpoint(self):
        """Test feature creation through API."""
        response = client.post(
            "/feature/",
            json={"name": "test_feature", "description": "Test description"}
        )
        
        assert response.status_code == 200
        data = response.json()
        assert data["name"] == "test_feature"
        assert "id" in data
    
    def test_get_features_endpoint(self):
        """Test feature retrieval through API."""
        response = client.get("/feature/")
        
        assert response.status_code == 200
        data = response.json()
        assert isinstance(data, list)
```

## πŸ”§ Development Workflow

### 1. **Feature Development Process**

1. **Plan the Feature**:
   ```bash
   # Create feature branch
   git checkout -b feature/new-analysis-agent
   
   # Document requirements
   echo "## New Analysis Agent" >> docs/feature_plan.md
   ```

2. **Implement Core Logic**:
   ```bash
   # Create agent signature
   # Add to agents_config.json
   # Implement business logic in managers/
   # Create route handlers
   ```

3. **Add Database Changes**:
   ```bash
   # Modify models if needed
   alembic revision --autogenerate -m "Add new analysis tables"
   alembic upgrade head
   ```

4. **Testing**:
   ```bash
   # Run unit tests
   pytest tests/unit/
   
   # Run integration tests
   pytest tests/integration/
   
   # Test API endpoints
   curl -X POST "http://localhost:8000/feature/test"
   ```

5. **Documentation**:
   ```bash
   # Update API documentation
   # Add to troubleshooting guide if needed
   # Update getting started guide
   ```

### 2. **Code Review Checklist**

- [ ] **Type Hints**: All functions have proper type annotations
- [ ] **Documentation**: Docstrings for all public functions and classes
- [ ] **Error Handling**: Comprehensive exception handling with logging
- [ ] **Testing**: Unit tests cover all new functionality
- [ ] **Database**: Proper session management and transaction handling
- [ ] **Async**: Appropriate use of async/await patterns
- [ ] **Logging**: Meaningful log messages at appropriate levels
- [ ] **Security**: Input validation and authorization checks
- [ ] **Performance**: Efficient database queries and memory usage

### 3. **Release Process**

1. **Pre-release Testing**:
   ```bash
   # Run full test suite
   pytest tests/
   
   # Test database migrations
   alembic upgrade head
   
   # Test with sample data
   python scripts/test_with_sample_data.py
   ```

2. **Documentation Updates**:
   ```bash
   # Update API documentation
   # Update troubleshooting guide
   # Update changelog
   ```

3. **Deployment Preparation**:
   ```bash
   # Update requirements.txt
   pip freeze > requirements.txt
   
   # Test container build
   docker build -t auto-analyst-backend .
   
   # Verify environment variables
   python scripts/verify_env.py
   ```

## πŸ“Š Performance Considerations

### 1. **Database Optimization**

```python
# Use query optimization
from sqlalchemy.orm import joinedload

# Bad: N+1 query problem
users = session.query(User).all()
for user in users:
    print(user.chats)  # Separate query for each user

# Good: Eager loading
users = session.query(User).options(joinedload(User.chats)).all()
for user in users:
    print(user.chats)  # No additional queries

# Use pagination for large datasets
def get_paginated_results(session, model, page=1, per_page=20):
    offset = (page - 1) * per_page
    return session.query(model).offset(offset).limit(per_page).all()
```

### 2. **Memory Management**

```python
# Efficient data processing
def process_large_dataset(file_path: str):
    # Bad: Load entire file into memory
    # df = pd.read_csv(file_path)
    
    # Good: Process in chunks
    chunk_size = 1000
    for chunk in pd.read_csv(file_path, chunksize=chunk_size):
        process_chunk(chunk)
        # Memory is freed after each chunk

# Clean up resources
def cleanup_session_data(session_id: str):
    if session_id in global_session_data:
        del global_session_data[session_id]
    gc.collect()  # Force garbage collection
```

### 3. **Async Optimization**

```python
# Use connection pooling
from sqlalchemy.pool import QueuePool

engine = create_engine(
    DATABASE_URL,
    poolclass=QueuePool,
    pool_size=20,
    max_overflow=30
)

# Batch operations
async def batch_process_agents(agents: List[str], queries: List[str]):
    semaphore = asyncio.Semaphore(5)  # Limit concurrent operations
    
    async def process_with_limit(agent, query):
        async with semaphore:
            return await process_agent(agent, query)
    
    tasks = [
        process_with_limit(agent, query) 
        for agent, query in zip(agents, queries)
    ]
    
    return await asyncio.gather(*tasks, return_exceptions=True)
```

This development workflow guide provides a comprehensive framework for maintaining code quality, consistency, and performance in the Auto-Analyst backend system. Following these patterns ensures that new features integrate seamlessly with the existing architecture while maintaining the high standards of the codebase.