Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 15,910 Bytes
7643a03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# Auto-Analyst Backend Development Workflow
## π― Development Philosophy
The Auto-Analyst backend follows modern Python development practices with emphasis on:
- **Modularity**: Clear separation of concerns across components
- **Async-First**: Non-blocking operations for scalability
- **Type Safety**: Comprehensive type hints and validation
- **Documentation**: Self-documenting code and comprehensive docs
- **Testing**: Robust testing at multiple levels
- **Performance**: Optimized for real-world usage patterns
## ποΈ Code Organization Principles
### 1. **Directory Structure Standards**
```
src/
βββ agents/ # AI agent implementations
β βββ agents.py # Core agent definitions
β βββ deep_agents.py # Deep analysis system
β βββ retrievers/ # Information retrieval components
βββ db/ # Database layer
β βββ init_db.py # Database initialization
β βββ schemas/ # SQLAlchemy models
βββ managers/ # Business logic layer
β βββ chat_manager.py # Chat operations
β βββ ai_manager.py # AI model management
β βββ session_manager.py # Session lifecycle
βββ routes/ # FastAPI route handlers
β βββ session_routes.py # Core functionality
β βββ chat_routes.py # Chat endpoints
β βββ [feature]_routes.py # Feature-specific routes
βββ utils/ # Shared utilities
β βββ logger.py # Centralized logging
β βββ helpers.py # Common functions
βββ schemas/ # Pydantic models
βββ chat_schemas.py # Chat data models
βββ [feature]_schemas.py # Feature schemas
```
### 2. **Import Organization**
```python
# Standard library imports
import asyncio
import json
from datetime import datetime
from typing import List, Optional, Dict, Any
# Third-party imports
import dspy
import pandas as pd
from fastapi import APIRouter, Depends, HTTPException
from pydantic import BaseModel
from sqlalchemy.orm import Session
# Local imports
from src.db.init_db import session_factory
from src.db.schemas.models import User, Chat
from src.utils.logger import Logger
from src.managers.chat_manager import ChatManager
```
## π οΈ Development Patterns
### 1. **Agent Development Pattern**
```python
# 1. Define DSPy Signature
class new_analysis_agent(dspy.Signature):
"""
Comprehensive docstring explaining:
- Agent purpose and capabilities
- Input requirements and formats
- Expected output format
- Usage examples
"""
goal = dspy.InputField(desc="Clear description of analysis objective")
dataset = dspy.InputField(desc="Dataset structure and content description")
plan_instructions = dspy.InputField(desc="Execution plan from planner")
summary = dspy.OutputField(desc="Natural language summary of analysis")
code = dspy.OutputField(desc="Executable Python code for analysis")
# 2. Add to Agent Configuration
# In agents_config.json:
{
"template_name": "new_analysis_agent",
"description": "Performs specialized analysis on datasets",
"variant_type": "both", # individual, planner, or both
"is_premium": false, # Will be active by default
"usage_count": 0,
"icon_url": "analysis.svg"
}
# 3. Register in Agent System
# In agents.py, add to the appropriate loading functions
```
### 2. **Route Development Pattern**
```python
# 1. Create route file: src/routes/feature_routes.py
from fastapi import APIRouter, Depends, HTTPException, Query
from pydantic import BaseModel
from typing import List, Optional
from src.db.init_db import session_factory
from src.db.schemas.models import FeatureModel
from src.utils.logger import Logger
logger = Logger("feature_routes", see_time=True, console_log=False)
router = APIRouter(prefix="/feature", tags=["feature"])
# 2. Define Pydantic schemas
class FeatureCreate(BaseModel):
name: str
description: Optional[str] = None
class FeatureResponse(BaseModel):
id: int
name: str
description: Optional[str]
created_at: datetime
# 3. Implement endpoints with proper error handling
@router.post("/", response_model=FeatureResponse)
async def create_feature(feature: FeatureCreate):
try:
session = session_factory()
try:
new_feature = FeatureModel(
name=feature.name,
description=feature.description
)
session.add(new_feature)
session.commit()
session.refresh(new_feature)
return FeatureResponse(
id=new_feature.id,
name=new_feature.name,
description=new_feature.description,
created_at=new_feature.created_at
)
except Exception as e:
session.rollback()
logger.log_message(f"Error creating feature: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=f"Failed to create feature: {str(e)}")
finally:
session.close()
except Exception as e:
logger.log_message(f"Error in create_feature: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# 4. Register in app.py
from src.routes.feature_routes import router as feature_router
app.include_router(feature_router)
```
### 3. **Database Model Pattern**
```python
# In src/db/schemas/models.py
from sqlalchemy import Column, Integer, String, DateTime, Boolean, Text, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from datetime import datetime, timezone
Base = declarative_base()
class NewModel(Base):
__tablename__ = "new_models"
# Primary key
id = Column(Integer, primary_key=True, autoincrement=True)
# Required fields
name = Column(String(255), nullable=False, unique=True)
# Optional fields
description = Column(Text, nullable=True)
is_active = Column(Boolean, default=True, nullable=False)
# Timestamps
created_at = Column(DateTime, default=lambda: datetime.now(timezone.utc), nullable=False)
updated_at = Column(DateTime, default=lambda: datetime.now(timezone.utc), onupdate=lambda: datetime.now(timezone.utc), nullable=False)
# Foreign keys
user_id = Column(Integer, ForeignKey("users.user_id"), nullable=True)
# Relationships
user = relationship("User", back_populates="new_models")
def __repr__(self):
return f"<NewModel(id={self.id}, name='{self.name}')>"
# Update User model to include back reference
class User(Base):
# ... existing fields ...
new_models = relationship("NewModel", back_populates="user")
```
### 4. **Manager Pattern**
```python
# In src/managers/feature_manager.py
from typing import List, Optional, Dict, Any
from sqlalchemy.orm import Session
from src.db.schemas.models import FeatureModel
from src.utils.logger import Logger
logger = Logger("feature_manager", see_time=True, console_log=False)
class FeatureManager:
"""
Manages business logic for feature operations.
Separates complex business logic from route handlers.
"""
def __init__(self, session: Session):
self.session = session
async def create_feature(self, name: str, description: Optional[str] = None) -> FeatureModel:
"""Create a new feature with validation and business logic."""
try:
# Validation
if not name or len(name.strip()) == 0:
raise ValueError("Feature name cannot be empty")
# Check for duplicates
existing = self.session.query(FeatureModel).filter_by(name=name).first()
if existing:
raise ValueError(f"Feature with name '{name}' already exists")
# Create feature
feature = FeatureModel(name=name, description=description)
self.session.add(feature)
self.session.commit()
self.session.refresh(feature)
logger.log_message(f"Created feature: {name}", level=logging.INFO)
return feature
except Exception as e:
self.session.rollback()
logger.log_message(f"Error creating feature: {str(e)}", level=logging.ERROR)
raise
async def get_features(self, active_only: bool = True) -> List[FeatureModel]:
"""Retrieve features with optional filtering."""
try:
query = self.session.query(FeatureModel)
if active_only:
query = query.filter(FeatureModel.is_active == True)
features = query.order_by(FeatureModel.created_at.desc()).all()
return features
except Exception as e:
logger.log_message(f"Error retrieving features: {str(e)}", level=logging.ERROR)
raise
```
## π Code Quality Standards
### 1. **Type Hints and Documentation**
```python
from typing import List, Optional, Dict, Any, Union
from datetime import datetime
async def process_analysis_data(
data: pd.DataFrame,
analysis_type: str,
user_id: Optional[int] = None,
options: Dict[str, Any] = None
) -> Dict[str, Union[str, List[Any], bool]]:
"""
Process analysis data with specified parameters.
Args:
data: Input DataFrame containing the data to analyze
analysis_type: Type of analysis to perform ("statistical", "ml", "viz")
user_id: Optional user ID for tracking and personalization
options: Additional options for analysis configuration
Returns:
Dictionary containing:
- status: "success" or "error"
- result: Analysis results or error message
- metadata: Additional information about the analysis
Raises:
ValueError: If analysis_type is not supported
DataError: If data format is invalid
Example:
>>> data = pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
>>> result = await process_analysis_data(data, "statistical")
>>> print(result["status"])
"success"
"""
if options is None:
options = {}
# Implementation...
return {"status": "success", "result": [], "metadata": {}}
```
### 2. **Error Handling Patterns**
```python
# Comprehensive error handling with logging and user-friendly messages
async def safe_operation(data: Any) -> Dict[str, Any]:
"""
Template for safe operations with comprehensive error handling.
"""
try:
# Validation
if not data:
raise ValueError("Data cannot be empty")
# Main operation
result = await perform_operation(data)
# Success logging
logger.log_message("Operation completed successfully", level=logging.INFO)
return {"success": True, "data": result}
except ValueError as e:
# Input validation errors
logger.log_message(f"Validation error: {str(e)}", level=logging.WARNING)
return {"success": False, "error": "Invalid input", "details": str(e)}
except ConnectionError as e:
# External service errors
logger.log_message(f"Connection error: {str(e)}", level=logging.ERROR)
return {"success": False, "error": "Service unavailable", "details": "Please try again later"}
except Exception as e:
# Unexpected errors
logger.log_message(f"Unexpected error in safe_operation: {str(e)}", level=logging.ERROR)
return {"success": False, "error": "Internal error", "details": "Please contact support"}
```
### 3. **Async/Await Best Practices**
```python
import asyncio
from typing import List, Coroutine
# Proper async function definition
async def async_agent_execution(agents: List[str], query: str) -> List[Dict[str, Any]]:
"""Execute multiple agents concurrently."""
# Create coroutines
tasks = [
execute_single_agent(agent, query)
for agent in agents
]
# Execute concurrently with error handling
results = []
for task in asyncio.as_completed(tasks):
try:
result = await task
results.append(result)
except Exception as e:
logger.log_message(f"Agent execution failed: {e}", level=logging.ERROR)
results.append({"error": str(e)})
return results
# Database operations with proper session management
async def async_database_operation(session: Session) -> Any:
"""Template for async database operations."""
try:
# Use asyncio.to_thread for CPU-bound database operations
result = await asyncio.to_thread(
lambda: session.query(Model).filter(...).all()
)
return result
except Exception as e:
session.rollback()
raise
finally:
session.close()
```
## π§ Development Workflow
### 1. **Feature Development Process**
1. **Plan the Feature**:
```bash
# Create feature branch
git checkout -b feature/new-analysis-agent
# Document requirements
echo "## New Analysis Agent" >> docs/feature_plan.md
```
2. **Implement Core Logic**:
```bash
# Create agent signature
# Add to agents_config.json
# Implement business logic in managers/
# Create route handlers
```
3. **Add Database Changes**:
```bash
# Modify models if needed
alembic revision --autogenerate -m "Add new analysis tables"
alembic upgrade head
```
### 3. **Release Process**
1. **Pre-release Testing**:
```bash
# Run full test suite
pytest tests/
# Test database migrations
alembic upgrade head
# Test with sample data
python scripts/test_with_sample_data.py
```
2. **Documentation Updates**:
```bash
# Update API documentation
# Update troubleshooting guide
# Update changelog
```
3. **Deployment Preparation**:
```bash
# Update requirements.txt
pip freeze > requirements.txt
# Test container build
docker build -t auto-analyst-backend .
```
## π Performance Considerations
### 1. **Database Optimization**
```python
# Use query optimization
from sqlalchemy.orm import joinedload
# Bad: N+1 query problem
users = session.query(User).all()
for user in users:
print(user.chats) # Separate query for each user
# Good: Eager loading
users = session.query(User).options(joinedload(User.chats)).all()
for user in users:
print(user.chats) # No additional queries
# Use pagination for large datasets
def get_paginated_results(session, model, page=1, per_page=20):
offset = (page - 1) * per_page
return session.query(model).offset(offset).limit(per_page).all()
```
### 2. **Async Optimization**
```python
# Use connection pooling
from sqlalchemy.pool import QueuePool
engine = create_engine(
DATABASE_URL,
poolclass=QueuePool,
pool_size=20,
max_overflow=30
)
# Batch operations
async def batch_process_agents(agents: List[str], queries: List[str]):
semaphore = asyncio.Semaphore(5) # Limit concurrent operations
async def process_with_limit(agent, query):
async with semaphore:
return await process_agent(agent, query)
tasks = [
process_with_limit(agent, query)
for agent, query in zip(agents, queries)
]
return await asyncio.gather(*tasks, return_exceptions=True)
```
This development workflow guide provides a comprehensive framework for maintaining code quality, consistency, and performance in the Auto-Analyst backend system. Following these patterns ensures that new features integrate seamlessly with the existing architecture while maintaining the high standards of the codebase. |