Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,485 Bytes
1c66926 0b14a8b 1c66926 0b14a8b 1c66926 0b14a8b 1c66926 0b14a8b 1c66926 0b14a8b 1c66926 0b14a8b 1c66926 0b14a8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import re
import json
import sys
import contextlib
from io import StringIO
import time
import logging
from src.utils.logger import Logger
import textwrap
logger = Logger(__name__, level="INFO", see_time=False, console_log=False)
@contextlib.contextmanager
def stdoutIO(stdout=None):
old = sys.stdout
if stdout is None:
stdout = StringIO()
sys.stdout = stdout
yield stdout
sys.stdout = old
def clean_print_statements(code_block):
"""
This function cleans up any `print()` statements that might contain unwanted `\n` characters.
It ensures print statements are properly formatted without unnecessary newlines.
"""
# This regex targets print statements, even if they have newlines inside
return re.sub(r'print\((.*?)(\\n.*?)(.*?)\)', r'print(\1\3)', code_block, flags=re.DOTALL)
def remove_code_block_from_summary(summary):
# use regex to remove code block from summary list
summary = re.sub(r'```python\n(.*?)\n```', '', summary)
return summary.split("\n")
def remove_main_block(code):
# Match the __main__ block
pattern = r'(?m)^if\s+__name__\s*==\s*["\']__main__["\']\s*:\s*\n((?:\s+.*\n?)*)'
match = re.search(pattern, code)
if match:
main_block = match.group(1)
# Dedent the code block inside __main__
dedented_block = textwrap.dedent(main_block)
# Remove \n from any print statements in the block (also handling multiline print cases)
dedented_block = clean_print_statements(dedented_block)
# Replace the block in the code
cleaned_code = re.sub(pattern, dedented_block, code)
# Optional: Remove leading newlines if any
cleaned_code = cleaned_code.strip()
return cleaned_code
return code
def format_code_block(code_str):
code_clean = re.sub(r'^```python\n?', '', code_str, flags=re.MULTILINE)
code_clean = re.sub(r'\n```$', '', code_clean)
return f'\n{code_clean}\n'
def format_code_backticked_block(code_str):
code_clean = re.sub(r'^```python\n?', '', code_str, flags=re.MULTILINE)
code_clean = re.sub(r'\n```$', '', code_clean)
# Only match assignments at top level (not indented)
# 1. Remove 'df = pd.DataFrame()' if it's at the top level
# Remove reading the csv file if it's already in the context
modified_code = re.sub(r"df\s*=\s*pd\.read_csv\([\"\'].*?[\"\']\).*?(\n|$)", '', code_clean)
# Only match assignments at top level (not indented)
# 1. Remove 'df = pd.DataFrame()' if it's at the top level
modified_code = re.sub(
r"^df\s*=\s*pd\.DataFrame\(\s*\)\s*(#.*)?$",
'',
modified_code,
flags=re.MULTILINE
)
# # Remove sample dataframe lines with multiple array values
modified_code = re.sub(r"^# Sample DataFrames?.*?(\n|$)", '', modified_code, flags=re.MULTILINE | re.IGNORECASE)
# # Remove plt.show() statements
modified_code = re.sub(r"plt\.show\(\).*?(\n|$)", '', modified_code)
# remove main
code_clean = remove_main_block(modified_code)
return f'```python\n{code_clean}\n```'
# In format_response.py, modify the execute_code function:
def execute_code_from_markdown(code_str, dataframe=None):
import pandas as pd
import plotly.express as px
import plotly
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
context = {
'pd': pd,
'px': px,
'go': go,
'plt': plt,
'plotly': plotly,
'__builtins__': __builtins__,
'__import__': __import__,
'sns': sns,
'np': np,
'json_outputs': [] # List to store multiple Plotly JSON outputs
}
# If a dataframe is provided, add it to the context
if dataframe is not None:
context['df'] = dataframe
# Modify code to store multiple JSON outputs
modified_code = re.sub(
r'(\w*_?)fig(\w*)\.show\(\)',
r'json_outputs.append(plotly.io.to_json(\1fig\2, pretty=True))',
code_str
)
modified_code = re.sub(
r'(\w*_?)fig(\w*)\.to_html\(.*?\)',
r'json_outputs.append(plotly.io.to_json(\1fig\2, pretty=True))',
modified_code
)
# Remove reading the csv file if it's already in the context
modified_code = re.sub(r"df\s*=\s*pd\.read_csv\([\"\'].*?[\"\']\).*?(\n|$)", '', modified_code)
# Only match assignments at top level (not indented)
# 1. Remove 'df = pd.DataFrame()' if it's at the top level
modified_code = re.sub(
r"^df\s*=\s*pd\.DataFrame\(\s*\)\s*(#.*)?$",
'',
modified_code,
flags=re.MULTILINE
)
# # Remove sample dataframe lines with multiple array values
modified_code = re.sub(r"^# Sample DataFrames?.*?(\n|$)", '', modified_code, flags=re.MULTILINE | re.IGNORECASE)
# # Remove plt.show() statements
modified_code = re.sub(r"plt\.show\(\).*?(\n|$)", '', modified_code)
# Only add df = pd.read_csv() if no dataframe was provided and the code contains pd.read_csv
if dataframe is None and 'pd.read_csv' not in modified_code:
modified_code = re.sub(
r'import pandas as pd',
r'import pandas as pd\n\n# Read Housing.csv\ndf = pd.read_csv("Housing.csv")',
modified_code
)
try:
with stdoutIO() as s:
exec(modified_code, context) # Execute the modified code
output = s.getvalue()
json_outputs = context.get('json_outputs', [])
return output, json_outputs
except Exception as e:
return "Error executing code: " + str(e), []
def format_response_to_markdown(api_response, agent_name = None, dataframe=None):
try:
markdown = []
logger.log_message(f"API response for {agent_name} at {time.strftime('%Y-%m-%d %H:%M:%S')}: {api_response}", level=logging.INFO)
if isinstance(api_response, dict):
for key in api_response:
if "error" in api_response[key]:
return f"**Error**: Rate limit exceeded. Please try switching models from the settings."
# You can add more checks here if needed for other keys
# Handle error responses
if isinstance(api_response, dict) and "error" in api_response:
return f"**Error**: {api_response['error']}"
if "response" in api_response and isinstance(api_response['response'], str):
if any(err in api_response['response'].lower() for err in ["auth", "api", "lm"]):
return "**Error**: Authentication failed. Please check your API key in settings and try again."
if "model" in api_response['response'].lower():
return "**Error**: Model configuration error. Please verify your model selection in settings."
for agent, content in api_response.items():
agent = agent.split("__")[0] if "__" in agent else agent
if "memory" in agent or not content:
continue
markdown.append(f"\n## {agent.replace('_', ' ').title()}\n")
if agent == "analytical_planner":
if 'plan_desc' in content:
markdown.append(f"### Reasoning\n{content['plan_desc']}\n")
else:
markdown.append(f"### Reasoning\n{content['rationale']}\n")
else:
if "rationale" in content:
markdown.append(f"### Reasoning\n{content['rationale']}\n")
if 'code' in content:
markdown.append(f"### Code Implementation\n{format_code_backticked_block(content['code'])}\n")
if agent_name is not None:
# execute the code
clean_code = format_code_block(content['code'])
output, json_outputs = execute_code_from_markdown(clean_code, dataframe)
if output:
markdown.append("### Execution Output\n")
markdown.append(f"```output\n{output}\n```\n")
if json_outputs:
markdown.append("### Plotly JSON Outputs\n")
for idx, json_output in enumerate(json_outputs):
if len(json_output) > 1000000: # If JSON is larger than 1MB
logger.log_message(f"Large JSON output detected: {len(json_output)} bytes", level=logging.WARNING)
markdown.append(f"```plotly\n{json_output}\n```\n")
if 'summary' in content:
# make the summary a bullet-point list
summary_lines = remove_code_block_from_summary(content['summary'])
summary_lines = content['summary'].split('\n')
# remove code block from summary
markdown.append("### Summary\n")
for line in summary_lines:
if line != "":
markdown.append(f"• {line.strip().replace('•', '').replace('-', '').replace('*', '') if line.strip().startswith('•') or line.strip().startswith('-') or line.strip().startswith('*') else line.strip()}\n")
if 'refined_complete_code' in content and 'summary' in content:
try:
if content['refined_complete_code'] is not None and content['refined_complete_code'] != "":
clean_code = format_code_block(content['refined_complete_code'])
markdown_code = format_code_backticked_block(content['refined_complete_code'])
output, json_outputs = execute_code_from_markdown(clean_code, dataframe)
elif "```python" in content['summary']:
clean_code = format_code_block(content['summary'])
markdown_code = format_code_backticked_block(content['summary'])
output, json_outputs = execute_code_from_markdown(clean_code, dataframe)
except Exception as e:
logger.log_message(f"Error in execute_code_from_markdown: {str(e)}", level=logging.ERROR)
markdown_code = f"**Error**: {str(e)}"
# continue
if markdown_code is not None:
markdown.append(f"### Refined Complete Code\n{markdown_code}\n")
if output:
markdown.append("### Execution Output\n")
markdown.append(f"```output\n{output}\n```\n")
if json_outputs:
markdown.append("### Plotly JSON Outputs\n")
for idx, json_output in enumerate(json_outputs):
markdown.append(f"```plotly\n{json_output}\n```\n")
# if agent_name is not None:
# if f"memory_{agent_name}" in api_response:
# markdown.append(f"### Memory\n{api_response[f'memory_{agent_name}']}\n")
except Exception as e:
logger.log_message(f"Error in format_response_to_markdown: {str(e)}", level=logging.ERROR)
return f"{str(e)}"
# logger.log_message(f"Generated markdown content for agent '{agent_name}' at {time.strftime('%Y-%m-%d %H:%M:%S')}: {markdown}, length: {len(markdown)}", level=logging.INFO)
if not markdown or len(markdown) <= 1:
logger.log_message(f"Generated markdown (ERROR) content for agent '{agent_name}' at {time.strftime('%Y-%m-%d %H:%M:%S')}: {markdown}, length: {len(markdown)}", level=logging.INFO)
return "Please provide a valid query..."
return '\n'.join(markdown)
# Example usage with dummy data
if __name__ == "__main__":
sample_response = {
"code_combiner_agent": {
"reasoning": "Sample reasoning for multiple charts.",
"refined_complete_code": """
```python
import plotly.express as px
import pandas as pd
# Sample Data
df = pd.DataFrame({'Category': ['A', 'B', 'C'], 'Values': [10, 20, 30]})
# First Chart
fig = px.bar(df, x='Category', y='Values', title='Bar Chart')
fig.show()
# Second Chart
fig2 = px.pie(df, values='Values', names='Category', title='Pie Chart')
fig2.show()
```
"""
}
}
formatted_md = format_response_to_markdown(sample_response) |