Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 35,883 Bytes
d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c 9c5b162 d32c69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
# Standard library imports
import asyncio
import json
import logging
import os
import time
import uuid
from io import StringIO
from typing import List, Optional
# Third-party imports
import groq
import pandas as pd
import uvicorn
from dotenv import load_dotenv
from fastapi import (
Depends,
FastAPI,
File,
Form,
HTTPException,
Request,
UploadFile
)
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.security import APIKeyHeader
from llama_index.core import Document, VectorStoreIndex
from pydantic import BaseModel
# Local application imports
from scripts.format_response import format_response_to_markdown
from src.agents.agents import *
from src.agents.retrievers.retrievers import *
from src.managers.ai_manager import AI_Manager
from src.managers.session_manager import SessionManager
from src.routes.analytics_routes import router as analytics_router
from src.routes.chat_routes import router as chat_router
from src.routes.code_routes import router as code_router
from src.routes.session_routes import router as session_router, get_session_id_dependency
from src.schemas.query_schemas import QueryRequest
from src.utils.logger import Logger
logger = Logger("app", see_time=True, console_log=False)
load_dotenv()
styling_instructions = [
"""
Dont ignore any of these instructions.
For a line chart always use plotly_white template, reduce x axes & y axes line to 0.2 & x & y grid width to 1.
Always give a title and make bold using html tag axis label and try to use multiple colors if more than one line
Annotate the min and max of the line
Display numbers in thousand(K) or Million(M) if larger than 1000/100000
Show percentages in 2 decimal points with '%' sign
Default size of chart should be height =1200 and width =1000
"""
, """
Dont ignore any of these instructions.
For a bar chart always use plotly_white template, reduce x axes & y axes line to 0.2 & x & y grid width to 1.
Always give a title and make bold using html tag axis label
Always display numbers in thousand(K) or Million(M) if larger than 1000/100000.
Annotate the values of the bar chart
If variable is a percentage show in 2 decimal points with '%' sign.
Default size of chart should be height =1200 and width =1000
"""
,
"""
For a histogram chart choose a bin_size of 50
Do not ignore any of these instructions
always use plotly_white template, reduce x & y axes line to 0.2 & x & y grid width to 1.
Always give a title and make bold using html tag axis label
Always display numbers in thousand(K) or Million(M) if larger than 1000/100000. Add annotations x values
If variable is a percentage show in 2 decimal points with '%'
Default size of chart should be height =1200 and width =1000
""",
"""
For a pie chart only show top 10 categories, bundle rest as others
Do not ignore any of these instructions
always use plotly_white template, reduce x & y axes line to 0.2 & x & y grid width to 1.
Always give a title and make bold using html tag axis label
Always display numbers in thousand(K) or Million(M) if larger than 1000/100000. Add annotations x values
If variable is a percentage show in 2 decimal points with '%'
Default size of chart should be height =1200 and width =1000
""",
"""
Do not ignore any of these instructions
always use plotly_white template, reduce x & y axes line to 0.2 & x & y grid width to 1.
Always give a title and make bold using html tag axis label
Always display numbers in thousand(K) or Million(M) if larger than 1000/100000. Add annotations x values
Don't add K/M if number already in , or value is not a number
If variable is a percentage show in 2 decimal points with '%'
Default size of chart should be height =1200 and width =1000
""",
"""
For a heat map
Use the 'plotly_white' template for a clean, white background.
Set a chart title
Style the X-axis with a black line color, 0.2 line width, 1 grid width, format 1000/1000000 as K/M
Do not format non-numerical numbers
.style the Y-axis with a black line color, 0.2 line width, 1 grid width format 1000/1000000 as K/M
Do not format non-numerical numbers
. Set the figure dimensions to a height of 1200 pixels and a width of 1000 pixels.
""",
"""
For a Histogram, used for returns/distribution plotting
Use the 'plotly_white' template for a clean, white background.
Set a chart title
Style the X-axis 1 grid width, format 1000/1000000 as K/M
Do not format non-numerical numbers
.style the Y-axis, 1 grid width format 1000/1000000 as K/M
Do not format non-numerical numbers
Use an opacity of 0.75
Set the figure dimensions to a height of 1200 pixels and a width of 1000 pixels.
"""
]
# Add near the top of the file, after imports
DEFAULT_MODEL_CONFIG = {
"provider": os.getenv("MODEL_PROVIDER", "openai"),
"model": os.getenv("MODEL_NAME", "gpt-4o-mini"),
"api_key": os.getenv("OPENAI_API_KEY"),
"temperature": float(os.getenv("TEMPERATURE", 1.0)),
"max_tokens": int(os.getenv("MAX_TOKENS", 6000))
}
# Create default LM config but don't set it globally
if DEFAULT_MODEL_CONFIG["provider"].lower() == "groq":
default_lm = dspy.GROQ(
model=DEFAULT_MODEL_CONFIG["model"],
api_key=DEFAULT_MODEL_CONFIG["api_key"],
temperature=DEFAULT_MODEL_CONFIG["temperature"],
max_tokens=DEFAULT_MODEL_CONFIG["max_tokens"]
)
elif DEFAULT_MODEL_CONFIG["provider"].lower() == "gemini":
default_lm = dspy.LM(
model=f"gemini/{DEFAULT_MODEL_CONFIG['model']}",
api_key=DEFAULT_MODEL_CONFIG["api_key"],
temperature=DEFAULT_MODEL_CONFIG["temperature"],
max_tokens=DEFAULT_MODEL_CONFIG["max_tokens"]
)
else:
default_lm = dspy.LM(
model=DEFAULT_MODEL_CONFIG["model"],
api_key=DEFAULT_MODEL_CONFIG["api_key"],
temperature=DEFAULT_MODEL_CONFIG["temperature"],
max_tokens=DEFAULT_MODEL_CONFIG["max_tokens"]
)
# Function to get model config from session or use default
def get_session_lm(session_state):
"""Get the appropriate LM instance for a session, or default if not configured"""
# First check if we have a valid session-specific model config
if session_state and isinstance(session_state, dict) and "model_config" in session_state:
model_config = session_state["model_config"]
if model_config and isinstance(model_config, dict) and "model" in model_config:
# Found valid session-specific model config, use it
provider = model_config.get("provider", "openai").lower()
if provider == "groq":
return dspy.GROQ(
model=model_config.get("model", DEFAULT_MODEL_CONFIG["model"]),
api_key=model_config.get("api_key", DEFAULT_MODEL_CONFIG["api_key"]),
temperature=model_config.get("temperature", DEFAULT_MODEL_CONFIG["temperature"]),
max_tokens=model_config.get("max_tokens", DEFAULT_MODEL_CONFIG["max_tokens"])
)
elif provider == "anthropic":
return dspy.LM(
model=model_config.get("model", DEFAULT_MODEL_CONFIG["model"]),
api_key=model_config.get("api_key", DEFAULT_MODEL_CONFIG["api_key"]),
temperature=model_config.get("temperature", DEFAULT_MODEL_CONFIG["temperature"]),
max_tokens=model_config.get("max_tokens", DEFAULT_MODEL_CONFIG["max_tokens"])
)
elif provider == "gemini":
return dspy.LM(
model=f"gemini/{model_config.get('model', DEFAULT_MODEL_CONFIG['model'])}",
api_key=model_config.get("api_key", DEFAULT_MODEL_CONFIG["api_key"]),
temperature=model_config.get("temperature", DEFAULT_MODEL_CONFIG["temperature"]),
max_tokens=model_config.get("max_tokens", DEFAULT_MODEL_CONFIG["max_tokens"])
)
else: # OpenAI is the default
return dspy.LM(
model=model_config.get("model", DEFAULT_MODEL_CONFIG["model"]),
api_key=model_config.get("api_key", DEFAULT_MODEL_CONFIG["api_key"]),
temperature=model_config.get("temperature", DEFAULT_MODEL_CONFIG["temperature"]),
max_tokens=model_config.get("max_tokens", DEFAULT_MODEL_CONFIG["max_tokens"])
)
# If no valid session config, use default
return default_lm
# Initialize retrievers with empty data first
def initialize_retrievers(styling_instructions: List[str], doc: List[str]):
try:
style_index = VectorStoreIndex.from_documents([Document(text=x) for x in styling_instructions])
data_index = VectorStoreIndex.from_documents([Document(text=x) for x in doc])
return {"style_index": style_index, "dataframe_index": data_index}
except Exception as e:
logger.log_message(f"Error initializing retrievers: {str(e)}", level=logging.ERROR)
raise e
# clear console
def clear_console():
os.system('cls' if os.name == 'nt' else 'clear')
# Check for Housing.csv
housing_csv_path = "Housing.csv"
if not os.path.exists(housing_csv_path):
logger.log_message(f"Housing.csv not found at {os.path.abspath(housing_csv_path)}", level=logging.ERROR)
raise FileNotFoundError(f"Housing.csv not found at {os.path.abspath(housing_csv_path)}")
AVAILABLE_AGENTS = {
"data_viz_agent": data_viz_agent,
"sk_learn_agent": sk_learn_agent,
"statistical_analytics_agent": statistical_analytics_agent,
"preprocessing_agent": preprocessing_agent,
}
PLANNER_AGENTS = {
"planner_preprocessing_agent": planner_preprocessing_agent,
"planner_sk_learn_agent": planner_sk_learn_agent,
"planner_statistical_analytics_agent": planner_statistical_analytics_agent,
"planner_data_viz_agent": planner_data_viz_agent,
}
# Add session header
X_SESSION_ID = APIKeyHeader(name="X-Session-ID", auto_error=False)
# Update AppState class to use SessionManager
class AppState:
def __init__(self):
self._session_manager = SessionManager(styling_instructions, AVAILABLE_AGENTS)
self.model_config = DEFAULT_MODEL_CONFIG.copy()
# Update the SessionManager with the current model_config
self._session_manager._app_model_config = self.model_config
self.ai_manager = AI_Manager()
self.chat_name_agent = chat_history_name_agent
def get_session_state(self, session_id: str):
"""Get or create session-specific state using the SessionManager"""
return self._session_manager.get_session_state(session_id)
def clear_session_state(self, session_id: str):
"""Clear session-specific state using the SessionManager"""
self._session_manager.clear_session_state(session_id)
def update_session_dataset(self, session_id: str, df, name, desc):
"""Update dataset for a specific session using the SessionManager"""
self._session_manager.update_session_dataset(session_id, df, name, desc)
def reset_session_to_default(self, session_id: str):
"""Reset a session to use the default dataset using the SessionManager"""
self._session_manager.reset_session_to_default(session_id)
def set_session_user(self, session_id: str, user_id: int, chat_id: int = None):
"""Associate a user with a session using the SessionManager"""
return self._session_manager.set_session_user(session_id, user_id, chat_id)
def get_ai_manager(self):
"""Get the AI Manager instance"""
return self.ai_manager
def get_provider_for_model(self, model_name):
return self.ai_manager.get_provider_for_model(model_name)
def calculate_cost(self, model_name, input_tokens, output_tokens):
return self.ai_manager.calculate_cost(model_name, input_tokens, output_tokens)
def save_usage_to_db(self, user_id, chat_id, model_name, provider, prompt_tokens, completion_tokens, total_tokens, query_size, response_size, cost, request_time_ms, is_streaming=False):
return self.ai_manager.save_usage_to_db(user_id, chat_id, model_name, provider, prompt_tokens, completion_tokens, total_tokens, query_size, response_size, round(cost, 7), request_time_ms, is_streaming)
def get_tokenizer(self):
return self.ai_manager.tokenizer
def get_chat_history_name_agent(self):
return dspy.Predict(self.chat_name_agent)
# Initialize FastAPI app with state
app = FastAPI(title="AI Analytics API", version="1.0")
app.state = AppState()
# Configure middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
expose_headers=["Content-Type", "Content-Length"]
)
# Add these constants at the top of the file with other imports/constants
RESPONSE_ERROR_INVALID_QUERY = "Please provide a valid query..."
RESPONSE_ERROR_NO_DATASET = "No dataset is currently loaded. Please link a dataset before proceeding with your analysis."
DEFAULT_TOKEN_RATIO = 1.5
REQUEST_TIMEOUT_SECONDS = 60 # Timeout for LLM requests
MAX_RECENT_MESSAGES = 3
DB_BATCH_SIZE = 10 # For future batch DB operations
# Replace the existing chat_with_agent function
@app.post("/chat/{agent_name}", response_model=dict)
async def chat_with_agent(
agent_name: str,
request: QueryRequest,
request_obj: Request,
session_id: str = Depends(get_session_id_dependency)
):
session_state = app.state.get_session_state(session_id)
try:
# Extract and validate query parameters
_update_session_from_query_params(request_obj, session_state)
# Validate dataset and agent name
if session_state["current_df"] is None:
raise HTTPException(status_code=400, detail=RESPONSE_ERROR_NO_DATASET)
_validate_agent_name(agent_name)
# Record start time for timing
start_time = time.time()
# Get chat context and prepare query
enhanced_query = _prepare_query_with_context(request.query, session_state)
# Initialize agent
if "," in agent_name:
agent_list = [AVAILABLE_AGENTS[agent.strip()] for agent in agent_name.split(",")]
agent = auto_analyst_ind(agents=agent_list, retrievers=session_state["retrievers"])
else:
agent = auto_analyst_ind(agents=[AVAILABLE_AGENTS[agent_name]], retrievers=session_state["retrievers"])
# Execute agent with timeout
try:
# Get session-specific model
session_lm = get_session_lm(session_state)
# Use session-specific model for this request
with dspy.context(lm=session_lm):
response = await asyncio.wait_for(
asyncio.to_thread(agent, enhanced_query, agent_name),
timeout=REQUEST_TIMEOUT_SECONDS
)
except asyncio.TimeoutError:
logger.log_message(f"Agent execution timed out for {agent_name}", level=logging.WARNING)
raise HTTPException(status_code=504, detail="Request timed out. Please try a simpler query.")
except Exception as agent_error:
logger.log_message(f"Agent execution failed: {str(agent_error)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail="Failed to process query. Please try again.")
formatted_response = format_response_to_markdown(response, agent_name, session_state["current_df"])
if formatted_response == RESPONSE_ERROR_INVALID_QUERY:
return {
"agent_name": agent_name,
"query": request.query,
"response": formatted_response,
"session_id": session_id
}
# Track usage statistics
if session_state.get("user_id"):
_track_model_usage(
session_state=session_state,
enhanced_query=enhanced_query,
response=response,
processing_time_ms=int((time.time() - start_time) * 1000)
)
return {
"agent_name": agent_name,
"query": request.query, # Return original query without context
"response": formatted_response,
"session_id": session_id
}
except HTTPException:
# Re-raise HTTP exceptions to preserve status codes
raise
except Exception as e:
logger.log_message(f"Unexpected error in chat_with_agent: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail="An unexpected error occurred. Please try again later.")
@app.post("/chat", response_model=dict)
async def chat_with_all(
request: QueryRequest,
request_obj: Request,
session_id: str = Depends(get_session_id_dependency)
):
session_state = app.state.get_session_state(session_id)
try:
# Extract and validate query parameters
_update_session_from_query_params(request_obj, session_state)
# Validate dataset
if session_state["current_df"] is None:
raise HTTPException(status_code=400, detail=RESPONSE_ERROR_NO_DATASET)
if session_state["ai_system"] is None:
raise HTTPException(status_code=500, detail="AI system not properly initialized.")
# Get session-specific model
session_lm = get_session_lm(session_state)
# Create streaming response
return StreamingResponse(
_generate_streaming_responses(session_state, request.query, session_lm),
media_type='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Content-Type': 'text/event-stream',
'Access-Control-Allow-Origin': '*',
'X-Accel-Buffering': 'no'
}
)
except HTTPException:
# Re-raise HTTP exceptions to preserve status codes
raise
except Exception as e:
logger.log_message(f"Unexpected error in chat_with_all: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail="An unexpected error occurred. Please try again later.")
# Helper functions to reduce duplication and improve modularity
def _update_session_from_query_params(request_obj: Request, session_state: dict):
"""Extract and validate chat_id and user_id from query parameters"""
# Check for chat_id in query parameters
if "chat_id" in request_obj.query_params:
try:
chat_id_param = int(request_obj.query_params.get("chat_id"))
# Update session state with this chat ID
session_state["chat_id"] = chat_id_param
except (ValueError, TypeError):
logger.log_message("Invalid chat_id parameter", level=logging.WARNING)
# Continue without updating chat_id
# Check for user_id in query parameters
if "user_id" in request_obj.query_params:
try:
user_id = int(request_obj.query_params["user_id"])
session_state["user_id"] = user_id
except (ValueError, TypeError):
raise HTTPException(
status_code=400,
detail="Invalid user_id in query params. Please provide a valid integer."
)
def _validate_agent_name(agent_name: str):
"""Validate that the requested agent(s) exist"""
if "," in agent_name:
agent_list = [agent.strip() for agent in agent_name.split(",")]
for agent in agent_list:
if agent not in AVAILABLE_AGENTS:
available = list(AVAILABLE_AGENTS.keys())
raise HTTPException(
status_code=404,
detail=f"Agent '{agent}' not found. Available agents: {available}"
)
elif agent_name not in AVAILABLE_AGENTS:
available = list(AVAILABLE_AGENTS.keys())
raise HTTPException(
status_code=404,
detail=f"Agent '{agent_name}' not found. Available agents: {available}"
)
def _prepare_query_with_context(query: str, session_state: dict) -> str:
"""Prepare the query with chat context from previous messages"""
chat_id = session_state.get("chat_id")
if not chat_id:
return query
# Get chat manager from app state
chat_manager = app.state._session_manager.chat_manager
# Get recent messages
recent_messages = chat_manager.get_recent_chat_history(chat_id, limit=MAX_RECENT_MESSAGES)
# Extract response history
chat_context = chat_manager.extract_response_history(recent_messages)
# Append context to the query if available
if chat_context:
return f"### Current Query:\n{query}\n\n{chat_context}"
return query
def _track_model_usage(session_state: dict, enhanced_query: str, response, processing_time_ms: int):
"""Track model usage statistics in the database"""
try:
ai_manager = app.state.get_ai_manager()
# Get model configuration
model_config = session_state.get("model_config", DEFAULT_MODEL_CONFIG)
model_name = model_config.get("model", DEFAULT_MODEL_CONFIG["model"])
provider = ai_manager.get_provider_for_model(model_name)
# Calculate token usage
try:
# Try exact tokenization
prompt_tokens = len(ai_manager.tokenizer.encode(enhanced_query))
completion_tokens = len(ai_manager.tokenizer.encode(str(response)))
total_tokens = prompt_tokens + completion_tokens
except Exception as token_error:
# Fall back to estimation
logger.log_message(f"Tokenization error: {str(token_error)}", level=logging.WARNING)
prompt_words = len(enhanced_query.split())
completion_words = len(str(response).split())
prompt_tokens = int(prompt_words * DEFAULT_TOKEN_RATIO)
completion_tokens = int(completion_words * DEFAULT_TOKEN_RATIO)
total_tokens = prompt_tokens + completion_tokens
# Calculate cost
cost = ai_manager.calculate_cost(model_name, prompt_tokens, completion_tokens)
# Save usage to database
ai_manager.save_usage_to_db(
user_id=session_state.get("user_id"),
chat_id=session_state.get("chat_id"),
model_name=model_name,
provider=provider,
prompt_tokens=int(prompt_tokens),
completion_tokens=int(completion_tokens),
total_tokens=int(total_tokens),
query_size=len(enhanced_query),
response_size=len(str(response)),
cost=round(cost, 7),
request_time_ms=processing_time_ms,
is_streaming=False
)
except Exception as e:
# Log but don't fail the request if usage tracking fails
logger.log_message(f"Failed to track model usage: {str(e)}", level=logging.ERROR)
async def _generate_streaming_responses(session_state: dict, query: str, session_lm):
"""Generate streaming responses for chat_with_all endpoint"""
overall_start_time = time.time()
total_response = ""
total_inputs = ""
usage_records = []
try:
# Add chat context from previous messages
enhanced_query = _prepare_query_with_context(query, session_state)
# Use the session model for this specific request
with dspy.context(lm=session_lm):
try:
# Get the plan
plan_response = await asyncio.wait_for(
asyncio.to_thread(session_state["ai_system"].get_plan, enhanced_query),
timeout=REQUEST_TIMEOUT_SECONDS
)
plan_description = format_response_to_markdown(
{"analytical_planner": plan_response},
dataframe=session_state["current_df"]
)
# Check if plan is valid
if plan_description == RESPONSE_ERROR_INVALID_QUERY:
yield json.dumps({
"agent": "Analytical Planner",
"content": plan_description,
"status": "error"
}) + "\n"
return
yield json.dumps({
"agent": "Analytical Planner",
"content": plan_description,
"status": "success" if plan_description else "error"
}) + "\n"
# Track planner usage
if session_state.get("user_id"):
planner_tokens = _estimate_tokens(ai_manager=app.state.ai_manager,
input_text=enhanced_query,
output_text=plan_description)
usage_records.append(_create_usage_record(
session_state=session_state,
model_name=session_state.get("model_config", DEFAULT_MODEL_CONFIG)["model"],
prompt_tokens=planner_tokens["prompt"],
completion_tokens=planner_tokens["completion"],
query_size=len(enhanced_query),
response_size=len(plan_description),
processing_time_ms=int((time.time() - overall_start_time) * 1000),
is_streaming=False
))
# Execute the plan with well-managed concurrency
async for agent_name, inputs, response in _execute_plan_with_timeout(
session_state["ai_system"], enhanced_query, plan_response):
if agent_name == "plan_not_found":
yield json.dumps({
"agent": "Analytical Planner",
"content": "**No plan found**\n\nPlease try again with a different query or try using a different model.",
"status": "error"
}) + "\n"
return
formatted_response = format_response_to_markdown(
{agent_name: response},
dataframe=session_state["current_df"]
) or "No response generated"
if formatted_response == RESPONSE_ERROR_INVALID_QUERY:
yield json.dumps({
"agent": agent_name,
"content": formatted_response,
"status": "error"
}) + "\n"
return
if "code_combiner_agent" in agent_name:
# logger.log_message(f"[>] Code combiner response: {response}", level=logging.INFO)
total_response += str(response) if response else ""
total_inputs += str(inputs) if inputs else ""
# Send response chunk
yield json.dumps({
"agent": agent_name.split("__")[0] if "__" in agent_name else agent_name,
"content": formatted_response,
"status": "success" if response else "error"
}) + "\n"
# Track agent usage for future batch DB write
if session_state.get("user_id"):
agent_tokens = _estimate_tokens(
ai_manager=app.state.ai_manager,
input_text=str(inputs),
output_text=str(response)
)
# Get appropriate model name for code combiner
if "code_combiner_agent" in agent_name and "__" in agent_name:
provider = agent_name.split("__")[1]
model_name = _get_model_name_for_provider(provider)
else:
model_name = session_state.get("model_config", DEFAULT_MODEL_CONFIG)["model"]
usage_records.append(_create_usage_record(
session_state=session_state,
model_name=model_name,
prompt_tokens=agent_tokens["prompt"],
completion_tokens=agent_tokens["completion"],
query_size=len(str(inputs)),
response_size=len(str(response)),
processing_time_ms=int((time.time() - overall_start_time) * 1000),
is_streaming=True
))
except asyncio.TimeoutError:
yield json.dumps({
"agent": "planner",
"content": "The request timed out. Please try a simpler query.",
"status": "error"
}) + "\n"
return
except Exception as e:
logger.log_message(f"Error in streaming response: {str(e)}", level=logging.ERROR)
yield json.dumps({
"agent": "planner",
"content": "An error occurred while generating responses. Please try again!",
"status": "error"
}) + "\n"
return
# Batch write usage records to DB
if usage_records and session_state.get("user_id"):
try:
# In a real implementation, you would batch these writes
# For now, we're writing them one by one but could be optimized
ai_manager = app.state.get_ai_manager()
for record in usage_records:
ai_manager.save_usage_to_db(**record)
except Exception as db_error:
logger.log_message(f"Failed to save usage records: {str(db_error)}", level=logging.ERROR)
except Exception as e:
logger.log_message(f"Streaming response generation failed: {str(e)}", level=logging.ERROR)
yield json.dumps({
"agent": "planner",
"content": "An error occurred while generating responses. Please try again!",
"status": "error"
}) + "\n"
def _estimate_tokens(ai_manager, input_text: str, output_text: str) -> dict:
"""Estimate token counts, with fallback for tokenization errors"""
try:
# Try exact tokenization
prompt_tokens = len(ai_manager.tokenizer.encode(input_text))
completion_tokens = len(ai_manager.tokenizer.encode(output_text))
except Exception:
# Fall back to estimation
prompt_words = len(input_text.split())
completion_words = len(output_text.split())
prompt_tokens = int(prompt_words * DEFAULT_TOKEN_RATIO)
completion_tokens = int(completion_words * DEFAULT_TOKEN_RATIO)
return {
"prompt": prompt_tokens,
"completion": completion_tokens,
"total": prompt_tokens + completion_tokens
}
def _create_usage_record(session_state: dict, model_name: str, prompt_tokens: int,
completion_tokens: int, query_size: int, response_size: int,
processing_time_ms: int, is_streaming: bool) -> dict:
"""Create a usage record for the database"""
ai_manager = app.state.get_ai_manager()
provider = ai_manager.get_provider_for_model(model_name)
cost = ai_manager.calculate_cost(model_name, prompt_tokens, completion_tokens)
return {
"user_id": session_state.get("user_id"),
"chat_id": session_state.get("chat_id"),
"model_name": model_name,
"provider": provider,
"prompt_tokens": int(prompt_tokens),
"completion_tokens": int(completion_tokens),
"total_tokens": int(prompt_tokens + completion_tokens),
"query_size": query_size,
"response_size": response_size,
"cost": round(cost, 7),
"request_time_ms": processing_time_ms,
"is_streaming": is_streaming
}
def _get_model_name_for_provider(provider: str) -> str:
"""Get the model name for a provider"""
provider_model_map = {
"openai": "o3-mini",
"anthropic": "claude-3-7-sonnet-latest",
"gemini": "gemini-2.5-pro-preview-03-25"
}
return provider_model_map.get(provider, "o3-mini")
async def _execute_plan_with_timeout(ai_system, enhanced_query, plan_response):
"""Execute the plan with timeout handling for each step"""
try:
# Use asyncio.create_task to run the execute_plan coroutine
async for agent_name, inputs, response in ai_system.execute_plan(enhanced_query, plan_response):
# Yield results as they come
yield agent_name, inputs, response
except Exception as e:
logger.log_message(f"Error executing plan: {str(e)}", level=logging.ERROR)
yield "error", None, {"error": "An error occurred during plan execution"}
# Add an endpoint to list available agents
@app.get("/agents", response_model=dict)
async def list_agents():
return {
"available_agents": list(AVAILABLE_AGENTS.keys()),
"description": "List of available specialized agents that can be called using @agent_name"
}
@app.get("/health", response_model=dict)
async def health():
return {"message": "API is healthy and running"}
@app.get("/")
async def index():
return {
"title": "Welcome to the AI Analytics API",
"message": "Explore our API for advanced analytics and visualization tools designed to empower your data-driven decisions.",
"description": "Utilize our powerful agents and models to gain insights from your data effortlessly.",
"colors": {
"primary": "#007bff",
"secondary": "#6c757d",
"success": "#28a745",
"danger": "#dc3545",
},
"features": [
"Real-time data processing",
"Customizable visualizations",
"Seamless integration with various data sources",
"User-friendly interface for easy navigation",
"Custom Analytics",
],
}
@app.post("/chat_history_name")
async def chat_history_name(request: dict, session_id: str = Depends(get_session_id_dependency)):
query = request.get("query")
name = None
lm = dspy.LM(model="gpt-4o-mini", max_tokens=300, temperature=0.5)
with dspy.context(lm=lm):
name = app.state.get_chat_history_name_agent()(query=str(query))
return {"name": name.name if name else "New Chat"}
# In the section where routers are included, add the session_router
app.include_router(chat_router)
app.include_router(analytics_router)
app.include_router(code_router)
app.include_router(session_router)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000) |