File size: 5,949 Bytes
66d92ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Fooocus on Docker

The docker image is based on NVIDIA CUDA 12.4 and PyTorch 2.1, see [Dockerfile](Dockerfile) and [requirements_docker.txt](requirements_docker.txt) for details.

## Requirements

- A computer with specs good enough to run Fooocus, and proprietary Nvidia drivers
- Docker, Docker Compose, or Podman

## Quick start

**More information in the [notes](#notes).**

### Running with Docker Compose

1. Clone this repository
2. Run the docker container with `docker compose up`.

### Running with Docker

```sh
docker run -p 7865:7865 -v fooocus-data:/content/data -it \
--gpus all \
-e CMDARGS=--listen \
-e DATADIR=/content/data \
-e config_path=/content/data/config.txt \
-e config_example_path=/content/data/config_modification_tutorial.txt \
-e path_checkpoints=/content/data/models/checkpoints/ \
-e path_loras=/content/data/models/loras/ \
-e path_embeddings=/content/data/models/embeddings/ \
-e path_vae_approx=/content/data/models/vae_approx/ \
-e path_upscale_models=/content/data/models/upscale_models/ \
-e path_inpaint=/content/data/models/inpaint/ \
-e path_controlnet=/content/data/models/controlnet/ \
-e path_clip_vision=/content/data/models/clip_vision/ \
-e path_fooocus_expansion=/content/data/models/prompt_expansion/fooocus_expansion/ \
-e path_outputs=/content/app/outputs/ \
ghcr.io/lllyasviel/fooocus
```
### Running with Podman

```sh
podman run -p 7865:7865 -v fooocus-data:/content/data -it \
--security-opt=no-new-privileges --cap-drop=ALL --security-opt label=type:nvidia_container_t --device=nvidia.com/gpu=all \
-e CMDARGS=--listen \
-e DATADIR=/content/data \
-e config_path=/content/data/config.txt \
-e config_example_path=/content/data/config_modification_tutorial.txt \
-e path_checkpoints=/content/data/models/checkpoints/ \
-e path_loras=/content/data/models/loras/ \
-e path_embeddings=/content/data/models/embeddings/ \
-e path_vae_approx=/content/data/models/vae_approx/ \
-e path_upscale_models=/content/data/models/upscale_models/ \
-e path_inpaint=/content/data/models/inpaint/ \
-e path_controlnet=/content/data/models/controlnet/ \
-e path_clip_vision=/content/data/models/clip_vision/ \
-e path_fooocus_expansion=/content/data/models/prompt_expansion/fooocus_expansion/ \
-e path_outputs=/content/app/outputs/ \
ghcr.io/lllyasviel/fooocus
```

When you see the message  `Use the app with http://0.0.0.0:7865/` in the console, you can access the URL in your browser.

Your models and outputs are stored in the `fooocus-data` volume, which, depending on OS, is stored in `/var/lib/docker/volumes/` (or `~/.local/share/containers/storage/volumes/` when using `podman`).

## Building the container locally

Clone the repository first, and open a terminal in the folder.

Build with `docker`:
```sh
docker build . -t fooocus
```

Build with `podman`:
```sh
podman build . -t fooocus
```

## Details

### Update the container manually (`docker compose`)

When you are using `docker compose up` continuously, the container is not updated to the latest version of Fooocus automatically.
Run `git pull` before executing `docker compose build --no-cache` to build an image with the latest Fooocus version.
You can then start it with `docker compose up`

### Import models, outputs

If you want to import files from models or the outputs folder, you can add the following bind mounts in the [docker-compose.yml](docker-compose.yml) or your preferred method of running the container:
```
#- ./models:/import/models   # Once you import files, you don't need to mount again.
#- ./outputs:/import/outputs  # Once you import files, you don't need to mount again.
```
After running the container, your files will be copied into `/content/data/models` and `/content/data/outputs`
Since `/content/data` is a persistent volume folder, your files will be persisted even when you re-run the container without the above mounts.


### Paths inside the container

|Path|Details|
|-|-|
|/content/app|The application stored folder|
|/content/app/models.org|Original 'models' folder.<br> Files are copied to the '/content/app/models' which is symlinked to '/content/data/models' every time the container boots. (Existing files will not be overwritten.) |
|/content/data|Persistent volume mount point|
|/content/data/models|The folder is symlinked to '/content/app/models'|
|/content/data/outputs|The folder is symlinked to '/content/app/outputs'|

### Environments

You can change `config.txt` parameters by using environment variables.
**The priority of using the environments is higher than the values defined in `config.txt`, and they will be saved to the `config_modification_tutorial.txt`**

Docker specified environments are there. They are used by 'entrypoint.sh'
|Environment|Details|
|-|-|
|DATADIR|'/content/data' location.|
|CMDARGS|Arguments for [entry_with_update.py](entry_with_update.py) which is called by [entrypoint.sh](entrypoint.sh)|
|config_path|'config.txt' location|
|config_example_path|'config_modification_tutorial.txt' location|
|HF_MIRROR| huggingface mirror site domain| 

You can also use the same json key names and values explained in the 'config_modification_tutorial.txt' as the environments.
See examples in the [docker-compose.yml](docker-compose.yml)

## Notes

- Please keep 'path_outputs' under '/content/app'. Otherwise, you may get an error when you open the history log.
- Docker on Mac/Windows still has issues in the form of slow volume access when you use "bind mount" volumes. Please refer to [this article](https://docs.docker.com/storage/volumes/#use-a-volume-with-docker-compose) for not using "bind mount".
- The MPS backend (Metal Performance Shaders, Apple Silicon M1/M2/etc.) is not yet supported in Docker, see https://github.com/pytorch/pytorch/issues/81224
- You can also use `docker compose up -d` to start the container detached and connect to the logs with `docker compose logs -f`. This way you can also close the terminal and keep the container running.