Spaces:
Runtime error
Runtime error
File size: 41,754 Bytes
9d11120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 |
import numpy as np
from scipy.spatial import distance as dist
from utils.labels import pose_id_part, pose_id_part_openpose, rev_pose_id_part_openpose, rev_pose_id_part
import cv2
import os
import json
def rescale_bb(boxes, pad, im_width, im_height):
"""
Modify in place the bounding box coordinates (percentage) to the new image width and height
Args:
:boxes (numpy.ndarray): Array of bounding box coordinates expressed in percentage [y_min, x_min, y_max, x_max]
:pad (tuple): The first element represents the right padding (applied by resize_preserving_ar() function);
the second element represents the bottom padding (applied by resize_preserving_ar() function) and
the third element is a tuple that is the shape of the image after resizing without the padding (this is useful for
the coordinates changes)
:im_width (int): The new image width
:im_height (int): The new image height
Returns:
"""
right_padding = pad[0]
bottom_padding = pad[1]
if bottom_padding != 0:
for box in boxes:
y_min, y_max = box[0] * im_height, box[2] * im_height # to pixels
box[0], box[2] = y_min / (im_height - pad[1]), y_max / (im_height - pad[1]) # back to percentage
if right_padding != 0:
for box in boxes:
x_min, x_max = box[1] * im_width, box[3] * im_width # to pixels
box[1], box[3] = x_min / (im_width - pad[0]), x_max / (im_width - pad[0]) # back to percentage
def rescale_key_points(key_points, pad, im_width, im_height):
"""
Modify in place the bounding box coordinates (percentage) to the new image width and height
Args:
:key_points (numpy.ndarray): Array of bounding box coordinates expressed in percentage [y_min, x_min, y_max, x_max]
:pad (tuple): The first element represents the right padding (applied by resize_preserving_ar() function);
the second element represents the bottom padding (applied by resize_preserving_ar() function) and
the third element is a tuple that is the shape of the image after resizing without the padding (this is useful for
the coordinates changes)
:im_width (int): The new image width
:im_height (int): The new image height
Returns:
"""
right_padding = pad[0]
bottom_padding = pad[1]
if bottom_padding != 0:
for aux in key_points:
for point in aux: # x 1 y 0
y = point[0] * im_height
point[0] = y / (im_height - pad[1])
if right_padding != 0:
for aux in key_points:
for point in aux:
x = point[1] * im_width
point[1] = x / (im_width - pad[0])
def change_coordinates_aspect_ratio(aux_key_points_array, img_person, img_person_resized):
"""
Args:
:
Returns:
:
"""
aux_key_points_array_ratio = []
ratio_h, ratio_w = img_person.shape[0] / (img_person_resized.shape[1]), img_person.shape[1] / (img_person_resized.shape[2]) # shape 0 batch 1
for elem in aux_key_points_array:
aux = np.zeros(3)
aux[0] = int((elem[0]) * ratio_h)
aux[1] = int(elem[1] * ratio_h)
aux[2] = int(elem[2])
aux_key_points_array_ratio.append(aux)
aux_key_points_array_ratio = np.array(aux_key_points_array_ratio, dtype=int)
return aux_key_points_array_ratio
def parse_output_pose(heatmaps, offsets, threshold):
"""
Parse the output pose (auxiliary function for tflite models)
Args:
:
Returns:
:
"""
#
# heatmaps: 9x9x17 probability of appearance of each keypoint in the particular part of the image (9,9) -> used to locate position of the joints
# offsets: 9x9x34 used for calculation of the keypoint's position (first 17 x coords, the second 17 y coords)
#
joint_num = heatmaps.shape[-1]
pose_kps = np.zeros((joint_num, 3), np.uint32)
for i in range(heatmaps.shape[-1]):
joint_heatmap = heatmaps[..., i]
max_val_pos = np.squeeze(np.argwhere(joint_heatmap == np.max(joint_heatmap)))
remap_pos = np.array(max_val_pos / 8 * 257, dtype=np.int32)
pose_kps[i, 0] = int(remap_pos[0] + offsets[max_val_pos[0], max_val_pos[1], i])
pose_kps[i, 1] = int(remap_pos[1] + offsets[max_val_pos[0], max_val_pos[1], i + joint_num])
max_prob = np.max(joint_heatmap)
if max_prob > threshold:
if pose_kps[i, 0] < 257 and pose_kps[i, 1] < 257:
pose_kps[i, 2] = 1
return pose_kps
def retrieve_xyz_from_detection(points_list, point_cloud_img):
"""
Retrieve the xyz of the list of points passed as input (if we have the point cloud of the image)
Args:
:points_list (list): list of points for which we want to retrieve xyz information
:point_cloud_img (numpy.ndarray): numpy array containing XYZRGBA information of the image
Returns:
:xyz (list): list of lists of 3D points with XYZ information (left camera origin (0,0,0))
"""
xyz = [[point_cloud_img[:, :, 0][point[1], point[0]], point_cloud_img[:, :, 1][point[1], point[0]], point_cloud_img[:, :, 2][point[1], point[0]]]
for point in points_list]
return xyz
def retrieve_xyz_pose_points(point_cloud_image, key_points_score, key_points):
"""Retrieve the key points from the point cloud to get the XYZ position in the 3D space
Args:
:point_cloud_image (numpy.ndarray):
:key_points_score (list):
:key_points (list):
Returns:
:xyz_pose: a list of lists representing the XYZ 3D coordinates of each key point (j is the index number of the id pose)
"""
xyz_pose = []
for i in range(len(key_points_score)):
xyz_pose_aux = []
for j in range(len(key_points_score[i])):
# if key_points_score[i][j] > threshold:# and j < 5:
x, y = int(key_points[i][j][0] * point_cloud_image.shape[0]) - 1, int(key_points[i][j][1] * point_cloud_image.shape[1]) - 1
xyz_pose_aux.append([point_cloud_image[x, y, 0], point_cloud_image[x, y, 1], point_cloud_image[x, y, 2], key_points_score[i][j]])
xyz_pose.append(xyz_pose_aux)
return xyz_pose
def compute_distance(points_list, min_distance=1.5):
"""
Compute the distance between each point and find if there are points that are closer to each other that do not respect a certain distance
expressed in meter.
Args:
:points_list (list): list of points expressed in xyz 3D coordinates (meters)
:min_distance (float): minimum threshold for distances (if the l2 distance between two objects is lower than this value it is considered a violation)
(default is 1.5)
Returns:
:distance_matrix: matrix containing the distances between each points (diagonal 0)
:violate: set of points that violate the minimum distance threshold
:couple_points: list of lists of couple points that violate the min_distance threshold (to keep track of each couple)
"""
if points_list is None or len(points_list) == 1 or len(points_list) == 0:
return None, None, None
else: # if there are more than two points
violate = set()
couple_points = []
aux = np.array(points_list)
distance_matrix = dist.cdist(aux, aux, 'euclidean')
for i in range(0, distance_matrix.shape[0]): # loop over the upper triangular of the distance matrix
for j in range(i + 1, distance_matrix.shape[1]):
if distance_matrix[i, j] < min_distance:
# print("Distance between {} and {} is {:.2f} meters".format(i, j, distance_matrix[i, j]))
violate.add(i)
violate.add(j)
couple_points.append((i, j))
return distance_matrix, violate, couple_points
def initialize_video_recorder(output_path, output_depth_path, fps, shape):
"""Initialize OpenCV video recorders that will be used to write each image/frame to a single video
Args:
:output (str): The file location where the recorded video will be saved
:output_depth (str): The file location where the recorded video with depth information will be saved
:fps (int): The frame per seconds of the output videos
:shape (tuple): The dimension of the output video (width, height)
Returns:
:writer (cv2.VideoWriter): The video writer used to save the video
:writer_depth (cv2.VideoWriter): The video writer used to save the video with depth information
"""
if not os.path.isdir(os.path.split(output_path)[0]):
logger.error("Invalid path for the video writer; folder does not exist")
exit(1)
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(output_path, fourcc, fps, shape, True)
writer_depth = None
if output_depth_path:
if not os.path.isdir(os.path.split(output_depth_path)[0]):
logger.error("Invalid path for the depth video writer; folder does not exist")
exit(1)
writer_depth = cv2.VideoWriter(output_depth_path, fourcc, fps, shape, True)
return writer, writer_depth
def delete_items_from_array_aux(arr, i):
"""
Auxiliary function that delete the item at a certain index from a numpy array
Args:
:arr (numpy.ndarray): Array of array where each element correspond to the four coordinates of bounding box expressed in percentage
:i (int): Index of the element to be deleted
Returns:
:arr_ret: the array without the element at index i
"""
aux = arr.tolist()
aux.pop(i)
arr_ret = np.array(aux)
return arr_ret
def fit_plane_least_square(xyz):
# find a plane that best fit xyz points using least squares
(rows, cols) = xyz.shape
g = np.ones((rows, 3))
g[:, 0] = xyz[:, 0] # X
g[:, 1] = xyz[:, 1] # Y
z = xyz[:, 2]
(a, b, c), _, rank, s = np.linalg.lstsq(g, z, rcond=None)
normal = (a, b, -1)
nn = np.linalg.norm(normal)
normal = normal / nn
point = np.array([0.0, 0.0, c])
d = -point.dot(normal)
return d, normal, point
#
# def plot_plane(data, normal, d):
# from mpl_toolkits.mplot3d import Axes3D
# import matplotlib.pyplot as plt
#
# fig = plt.figure()
# ax = fig.gca(projection='3d')
#
# # plot fitted plane
# maxx = np.max(data[:, 0])
# maxy = np.max(data[:, 1])
# minx = np.min(data[:, 0])
# miny = np.min(data[:, 1])
#
# # compute needed points for plane plotting
# xx, yy = np.meshgrid([minx - 10, maxx + 10], [miny - 10, maxy + 10])
# z = (-normal[0] * xx - normal[1] * yy - d) * 1. / normal[2]
#
# # plot plane
# ax.plot_surface(xx, yy, z, alpha=0.2)
#
# ax.set_xlabel('x')
# ax.set_ylabel('y')
# ax.set_zlabel('z')
# plt.show()
#
# return
def shape_to_np(shape, dtype="int"):
"""
Function used for the dlib facial detector; it determine the facial landmarks for the face region, then convert the facial landmark
(x, y)-coordinates to a NumPy array
Args:
:shape ():
:dtype ():
(Default is "int")
Returns:
:coordinates (list): list of x, y coordinates
"""
# initialize the list of (x, y)-coordinates
coordinates = np.zeros((68, 2), dtype=dtype)
# loop over the 68 facial landmarks and convert them to a 2-tuple of (x, y)-coordinates
for i in range(0, 68):
coordinates[i] = (shape.part(i).x, shape.part(i).y)
# return the list of (x, y)-coordinates
return coordinates
def rect_to_bb(rect):
"""
Function used for the dlib facial detector; it converts dlib's rectangle to a tuple (x, y, w, h) where x and y represent xmin and ymin
coordinates while w and h represent the width and the height
Args:
:rect (dlib.rectangle): dlib rectangle object that represents the region of the image where a face is detected
Returns:
:res (tuple): tuple that represents the region of the image where a face is detected in the form x, y, w, h
"""
# take a bounding predicted by dlib and convert it to the format (x, y, w, h) as we would normally do with OpenCV
x = rect.left()
y = rect.top()
w = rect.right() - x
h = rect.bottom() - y
# return a tuple of (x, y, w, h)
res = x, y, w, h
return res
def enlarge_bb(y_min, x_min, y_max, x_max, im_width, im_height):
"""
Enlarge the bounding box to include more background margin (used for face detection)
Args:
:y_min (int): the top y coordinate of the bounding box
:x_min (int): the left x coordinate of the bounding box
:y_max (int): the bottom y coordinate of the bounding box
:x_max (int): the right x coordinate of the bounding box
:im_width (int): The width of the image
:im_height (int): The height of the image
Returns:
:y_min (int): the top y coordinate of the bounding box after enlarging
:x_min (int): the left x coordinate of the bounding box after enlarging
:y_max (int): the bottom y coordinate of the bounding box after enlarging
:x_max (int): the right x coordinate of the bounding box after enlarging
"""
y_min = int(max(0, y_min - abs(y_min - y_max) / 10))
y_max = int(min(im_height, y_max + abs(y_min - y_max) / 10))
x_min = int(max(0, x_min - abs(x_min - x_max) / 5))
x_max = int(min(im_width, x_max + abs(x_min - x_max) / 4)) # 5
x_max = int(min(x_max, im_width))
return y_min, x_min, y_max, x_max
def linear_assignment(cost_matrix):
try:
import lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True)
return np.array([[y[i], i] for i in x if i >= 0])
except ImportError:
from scipy.optimize import linear_sum_assignment
x, y = linear_sum_assignment(cost_matrix)
return np.array(list(zip(x, y)))
def iou_batch(bb_test, bb_gt):
"""
From SORT: Computes IUO between two bboxes in the form [x1,y1,x2,y2]
Args:
:bb_test ():
:bb_gt ():
Returns:
"""
# print(bb_test, bb_gt)
bb_gt = np.expand_dims(bb_gt, 0)
bb_test = np.expand_dims(bb_test, 1)
xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) + (bb_gt[..., 2] - bb_gt[..., 0]) * (
bb_gt[..., 3] - bb_gt[..., 1]) - wh)
return o
def convert_bbox_to_z(bbox):
"""
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
the aspect ratio
Args:
:bbox ():
Returns:
"""
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w / 2.
y = bbox[1] + h / 2.
s = w * h # scale is just area
r = w / float(h) if float(h) != 0 else w
return np.array([x, y, s, r]).reshape((4, 1))
def convert_x_to_bbox(x, score=None):
"""
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
Args:
:x ():
:score ():
(Default is None)
Returns:
"""
w = np.sqrt(x[2] * x[3])
h = x[2] / w
if score is None:
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
else:
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3):
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
Args:
:detections ():
:trackers ():
:iou_threshold ():
(Default is 0.3)
Returns:
"""
if len(trackers) == 0:
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int)
iou_matrix = iou_batch(detections, trackers)
# print("IOU MATRIX: ", iou_matrix)
if min(iou_matrix.shape) > 0:
a = (iou_matrix > iou_threshold).astype(np.int32)
if a.sum(1).max() == 1 and a.sum(0).max() == 1:
matched_indices = np.stack(np.where(a), axis=1)
else:
matched_indices = linear_assignment(-iou_matrix)
else:
matched_indices = np.empty(shape=(0, 2))
unmatched_detections = []
for d, det in enumerate(detections):
if d not in matched_indices[:, 0]:
unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if t not in matched_indices[:, 1]:
unmatched_trackers.append(t)
# filter out matched with low IOU
matches = []
for m in matched_indices:
if iou_matrix[m[0], m[1]] < iou_threshold:
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1, 2))
if len(matches) == 0:
matches = np.empty((0, 2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
def find_face_from_key_points(key_points, bboxes, image, person=None, openpose=False, gazefollow=True):
"""
Args:
key_points:
bboxes:
image:
person:
openpose:
gazefollow:
Returns:
"""
im_width, im_height = image.shape[1], image.shape[0]
# key_points, bboxes = person.get_key_points()[-1], person.get_bboxes()[-1]
# print("PERSON ID:", person.get_id())
# 0 nose, 1/2 left/right eye, 3/4 left/right ear
# 5/6 leftShoulder/rightShoulder
# 7/8 leftElbow/rightElbow
# 9/10 leftWrist/rightWrist
# 11/12 leftHip/rightHip
# 13/14 leftKnee/rightKnee
# 15/16 leftAnkle/rightAnkle
# print(key_points)
face_points = key_points[:7]
if openpose:
face_points = []
for point in key_points[:7]:
# print(point[2], type(point[2]))
if point[2] > 0.0:
face_points.append(point)
# print("face1", face_points)
if len(face_points) == 0:
return None, []
# print("bboxe", bboxes, face_points)
if not gazefollow:
ct = compute_centroid(face_points)
x_min, y_min = ct[0] - 10, ct[1] - 15
x_max, y_max = ct[0] + 10, ct[1] + 10
y_min_bbox = y_min
elif gazefollow:
# [l_shoulder, r_shoulder] = key_points[5:]
# print(l_shoulder, r_shoulder)
print("FACE", face_points)
if len(face_points) == 1:
return None, []
x_min, y_min, _ = np.amin(face_points, axis=0)
x_max, y_max, _ = np.amax(face_points, axis=0)
# aux_diff =
# print("X: ", aux_diff)
# if aux_diff < 20:
# x_max += 20
# x_min -= 20
aux_diff = y_max - y_min
print("y: ", aux_diff)
if aux_diff < 50: # rapporto xmax -xmin o altro
y_max += (x_max - x_min) / 1.4
y_min -= (x_max - x_min) / 1.2
# x_min -= 10
# x_max += 10
y_min_bbox = int(y_min) # int(bboxes[1]) if bboxes is not None else y_min - (x_max-x_min)
# if bboxes is None:
# y_max = y_max + (x_max-x_min)
y_min, x_min, y_max, x_max = enlarge_bb(y_min_bbox, x_min, y_max, x_max, im_width, im_height)
# print(y_min, x_min, y_max, x_max, y_max - y_min, x_max - x_min)
# if -1 < y_max - y_min < 5 and -1 < x_max - x_min < 5: # due punti uguali
# # print("AAAAA")
# return None, []
face_image = image[y_min:y_max, x_min:x_max]
if person is not None:
# person.print_()
person.update_faces(face_image)
person.update_faces_coordinates([y_min, x_min, y_max, x_max])
# person.update_faces_key_points(face_points)
# person.print_()
return None
else:
return face_image, [y_min, x_min, y_max, x_max]
def compute_interaction_cosine(head_position, target_position, gaze_direction):
"""
Computes the interaction between two people using the angle of view.
The interaction in measured as the cosine of the angle formed by the line from person A to B and the gaze direction of person A.
Args:
:head_position (list): list of pixel coordinates [x, y] that represents the position of the head of person A
:target_position (list): list of pixel coordinates [x, y] that represents the position of head of person B
:gaze_direction (list): list that represents the gaze direction of the head of person A in the form [gx, gy]
Returns:
:val (float): value that describe the quantity of interaction
"""
if head_position == target_position:
return 0 # or -1
else:
# direction from observer to target
direction = np.arctan2((target_position[1] - head_position[1]), (target_position[0] - head_position[0]))
direction_gaze = np.arctan2(gaze_direction[1], gaze_direction[0])
difference = direction - direction_gaze
# difference of the line joining observer -> target with the gazing direction,
val = np.cos(difference)
if val < 0:
return 0
else:
return val
def compute_attention_from_vectors(list_objects):
"""
Args:
:list_objects ():
Returns:
"""
dict_person = dict()
id_list = []
for obj in list_objects:
if len(obj.get_key_points()) > 0:
# print("Object ID: ", obj.get_id(), "x: ", obj.get_poses_vector_norm()[-1][0], "y: ", obj.get_poses_vector_norm()[-1][1])
id_list.append(obj.get_id())
# print("kpts: ", obj.get_key_points()[-1])
aux = [obj.get_key_points()[-1][j][:2] for j in [0, 2, 1, 4, 3]]
dict_person[obj.get_id()] = [obj.get_poses_vector_norm()[-1], np.mean(aux, axis=0).tolist()]
attention_matrix = np.zeros((len(dict_person), len(dict_person)), dtype=np.float32)
for i in range(attention_matrix.shape[0]):
for j in range(attention_matrix.shape[1]):
if i == j:
continue
attention_matrix[i][j] = compute_interaction_cosine(dict_person[i][1], dict_person[j][1], dict_person[i][0])
return attention_matrix.tolist(), id_list
def compute_attention_ypr(list_objects):
"""
Args:
:list_objects ():
Returns:
:
"""
for obj in list_objects:
if len(obj.get_key_points()) > 0:
print("Object ID: ", obj.get_id(), "yaw: ", obj.get_poses_ypr()[-1][0], "pitch: ", obj.get_poses_ypr()[-1][1], "roll: ",
obj.get_poses_ypr()[-1][2])
def save_key_points_to_json(ids, kpts, path_json, openpose=False):
"""
Save key points to .json format according to Openpose output format
Args:
:kpts ():
:path_json ():
Returns:
"""
# print(path_json)
dict_file = {"version": 1.3}
list_dict_person = []
for j in range(len(kpts)):
dict_person = {"person_id": [int(ids[j])],
"face_keypoints_2d": [],
"hand_left_keypoints_2d": [],
"hand_right_keypoints_2d": [],
"pose_keypoints_3d": [],
"face_keypoints_3d": [],
"hand_left_keypoints_3d": [],
"hand_right_keypoints_3d": []}
kpts_openpose = np.zeros((25, 3))
for i, point in enumerate(kpts[j]):
if openpose:
idx_op = rev_pose_id_part_openpose[pose_id_part_openpose[i]]
else:
idx_op = rev_pose_id_part_openpose[pose_id_part[i]]
# print(idx_op, point[1], point[0], point[2])
kpts_openpose[idx_op] = [point[1], point[0], point[2]] # x, y, conf
list_kpts_openpose = list(np.concatenate(kpts_openpose).ravel())
dict_person["pose_keypoints_2d"] = list_kpts_openpose
# print(dict_person)
list_dict_person.append(dict_person)
dict_file["people"] = list_dict_person
# Serializing json
json_object = json.dumps(dict_file, indent=4)
# Writing to sample.json
with open(path_json, "w") as outfile:
outfile.write(json_object)
def json_to_poses(json_data):
"""
Args:
:js_data ():
Returns:
:res ():
"""
poses = []
confidences = []
ids = []
for arr in json_data["people"]:
ids.append(arr["person_id"])
confidences.append(arr["pose_keypoints_2d"][2::3])
aux = arr["pose_keypoints_2d"][2::3]
arr = np.delete(arr["pose_keypoints_2d"], slice(2, None, 3))
# print("B", list(zip(arr[::2], arr[1::2])))
poses.append(list(zip(arr[::2], arr[1::2], aux)))
return poses, confidences, ids
def parse_json1(aux):
# print(aux['people'])
list_kpts = []
id_list = []
for person in aux['people']:
# print(len(person['pose_keypoints_2d']))
aux = person['pose_keypoints_2d']
aux_kpts = [[aux[i+1], aux[i], aux[i+2]] for i in range(0, 75, 3)]
# print(len(aux_kpts))
list_kpts.append(aux_kpts)
id_list.append(person['person_id'])
# print(list_kpts)
return list_kpts, id_list
def load_poses_from_json1(json_filename):
"""
Args:
:json_filename ():
Returns:
:poses, conf:
"""
with open(json_filename) as data_file:
loaded = json.load(data_file)
zz = parse_json1(loaded)
return zz
def load_poses_from_json(json_filename):
"""
Args:
:json_filename ():
Returns:
:poses, conf:
"""
with open(json_filename) as data_file:
loaded = json.load(data_file)
poses, conf, ids = json_to_poses(loaded)
if len(poses) < 1: # != 1:
return None, None, None
else:
return poses, conf, ids
def compute_head_features(img, pose, conf, open_pose=True):
"""
Args:
img:
pose:
conf:
open_pose:
Returns:
"""
joints = [0, 15, 16, 17, 18] if open_pose else [0, 2, 1, 4, 3]
n_joints_set = [pose[joint] for joint in joints if joint_set(pose[joint])] # if open_pose else pose
if len(n_joints_set) < 1:
return None, None
centroid = compute_centroid(n_joints_set)
# for j in n_joints_set:
# print(j, centroid)
max_dist = max([dist_2D([j[0], j[1]], centroid) for j in n_joints_set])
new_repr = [(np.array([pose[joint][0], pose[joint][1]]) - np.array(centroid)) for joint in joints] if open_pose else [
(np.array(pose[i]) - np.array(centroid)) for i in range(len(n_joints_set))]
result = []
for i in range(0, 5):
if joint_set(pose[joints[i]]):
if max_dist != 0.0:
result.append([new_repr[i][0] / max_dist, new_repr[i][1] / max_dist])
else:
result.append([new_repr[i][0], new_repr[i][1]])
else:
result.append([0, 0])
flat_list = [item for sublist in result for item in sublist]
conf_list = []
for j in joints:
conf_list.append(conf[j])
return flat_list, conf_list, centroid
def compute_body_features(pose, conf):
"""
Args:
pose:
conf:
Returns:
"""
joints = [0, 15, 16, 17, 18]
alljoints = range(0, 25)
n_joints_set = [pose[joint] for joint in joints if joint_set(pose[joint])]
if len(n_joints_set) < 1:
return None, None
centroid = compute_centroid(n_joints_set)
n_joints_set = [pose[joint] for joint in alljoints if joint_set(pose[joint])]
max_dist = max([dist_2D(j, centroid) for j in n_joints_set])
new_repr = [(np.array(pose[joint]) - np.array(centroid)) for joint in alljoints]
result = []
for i in range(0, 25):
if joint_set(pose[i]):
result.append([new_repr[i][0] / max_dist, new_repr[i][1] / max_dist])
else:
result.append([0, 0])
flat_list = [item for sublist in result for item in sublist]
for j in alljoints:
flat_list.append(conf[j])
return flat_list, centroid
def compute_centroid(points):
"""
Args:
points:
Returns:
"""
x, y = [], []
for point in points:
if len(point) == 3:
if point[2] > 0.0:
x.append(point[0])
y.append(point[1])
else:
x.append(point[0])
y.append(point[1])
# print(x, y)
if x == [] or y == []:
return [None, None]
mean_x = np.mean(x)
mean_y = np.mean(y)
return [mean_x, mean_y]
def joint_set(p):
"""
Args:
p:
Returns:
"""
return p[0] != 0.0 or p[1] != 0.0
def dist_2D(p1, p2):
"""
Args:
p1:
p2:
Returns:
"""
# print(p1)
# print(p2)
p1 = np.array(p1)
p2 = np.array(p2)
squared_dist = np.sum((p1 - p2) ** 2, axis=0)
return np.sqrt(squared_dist)
def compute_head_centroid(pose):
"""
Args:
pose:
Returns:
"""
joints = [0, 15, 16, 17, 18]
n_joints_set = [pose[joint] for joint in joints if joint_set(pose[joint])]
# if len(n_joints_set) < 2:
# return None
centroid = compute_centroid(n_joints_set)
return centroid
def head_direction_to_json(path_json, norm_list, unc_list, ids_list, file_name):
dict_file = {}
list_dict_person = []
for k, i in enumerate(norm_list):
dict_person = {"id_person": [ids_list[k]],
"norm_xy": [i[0][0].item(), i[0][1].item()], # from numpy to native python type for json serilization
"center_xy": [int(i[1][0]), int(i[1][1])],
"uncertainty": [unc_list[k].item()]}
list_dict_person.append(dict_person)
dict_file["people"] = list_dict_person
json_object = json.dumps(dict_file, indent=4)
with open(path_json, "w") as outfile:
outfile.write(json_object)
def ypr_to_json(path_json, yaw_list, pitch_list, roll_list, yaw_u_list, pitch_u_list, roll_u_list, ids_list, center_xy):
dict_file = {}
list_dict_person = []
for k in range(len(yaw_list)):
dict_person = {"id_person": [ids_list[k]],
"yaw": [yaw_list[k].item()],
"yaw_u": [yaw_u_list[k].item()],
"pitch": [pitch_list[k].item()],
"pitch_u": [pitch_u_list[k].item()],
"roll": [roll_list[k].item()],
"roll_u": [roll_u_list[k].item()],
"center_xy": [int(center_xy[k][0]), int(center_xy[k][1])]}
list_dict_person.append(dict_person)
dict_file["people"] = list_dict_person
json_object = json.dumps(dict_file, indent=4)
with open(path_json, "w") as outfile:
outfile.write(json_object)
# exit()
def save_keypoints_image(img, poses, suffix_, path_save=''):
"""
Save the image with the key points drawn on it
Args:
img:
poses:
suffix_:
Returns:
"""
aux = img.copy()
for point in poses:
for i, p in enumerate(point):
if i in [0, 15, 16, 17, 18]:
cv2.circle(aux, (int(p[0]), int(p[1])), 2, (0, 255, 0), 2)
cv2.imwrite(os.path.join(path_save, suffix_ + '.jpg'), aux)
def unit_vector(vector):
"""
Returns the unit vector of the vector.
Args:
vector:
Returns:
"""
return vector / np.linalg.norm(vector)
def angle_between(v1, v2):
"""
Returns the angle in radians between vectors 'v1' and 'v2'::
angle_between((1, 0, 0), (0, 1, 0))
1.5707963267948966
angle_between((1, 0, 0), (1, 0, 0))
0.0
angle_between((1, 0, 0), (-1, 0, 0))
3.141592653589793
"""
# if not unit vector
v1_u = unit_vector(tuple(v1))
v2_u = unit_vector(tuple(v2))
angle = np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
return angle if angle < 1.80 else angle - 1.80
def centroid_constraint(centroid, centroid_det, gazefollow=False): # x y
"""
Args:
centroid:
centroid_det:
Returns:
"""
if centroid_det == [None, None]:
return False
if gazefollow == False:
if 0 < centroid_det[0] < 143 and 0 < centroid_det[1] < 24: # centroid in the overprinted text of hour in the video
return False
if 0 < centroid_det[1] < 4:
return False
if centroid[0] - 3 < centroid_det[0] < centroid[0] + 3 and centroid[1] - 3 < centroid_det[1] < centroid[
1] + 3: # detected centroid near the gt centroid
return True
else:
return False
else:
if int(centroid[0] - 30) < int(centroid_det[0]) < int(centroid[0] + 30) and int(centroid[1] - 30) < int(centroid_det[1]) < int(
centroid[1] + 30): # detected centroid near the gt centroid
return True
else:
return False
def initialize_video_reader(path_video):
"""
Args:
path_video:
Returns:
"""
cap = cv2.VideoCapture(path_video)
if cap is None or not cap.isOpened():
print('Warning: unable to open video source: ', path_video)
exit(-1)
return cap
def distance_skeletons(kpts1, kpts2, dst_type):
"""
Function to compute the distance between skeletons
#TO DO
Args:
kpts1:
kpts2:
dts_type:
Returns:
"""
if len(kpts1) != len(kpts2):
print("Error: Different notation used for keypoints")
exit(-1)
print(len(kpts1), len(kpts2))
# to openpose notations
if len(kpts1) == len(kpts2) == 17:
kpts1, kpts2 = kpt_centernet_to_openpose(kpts1), kpt_centernet_to_openpose(kpts2)
print(len(kpts1), len(kpts2))
if len(kpts1) != 25 or len(kpts2) != 25:
print("Error")
exit(-1)
res_dist = 0
if dst_type == 'all_points':
for i, _ in enumerate(kpts1):
res_dist += dist_2D(kpts1[i][:2], kpts2[i][:2])
res_dist /= 25
return res_dist
elif dst_type == 'head_centroid':
top1_c, top2_c = compute_head_centroid(kpts1), compute_head_centroid(kpts2)
if top1_c == [None, None] or top2_c == [None, None]:
res_dist = 900
else:
res_dist = dist_2D(top1_c[:2], top2_c[:2])
return res_dist
elif dst_type == 'three_centroids':
#TO DO
# top1_c, top2_c = compute_centroid(kpts1[0, 15, 16, 17, 18]), compute_centroid(kpts2[0, 15, 16, 17, 18])
# mid1_c, mid2_c = compute_centroid(kpts1[2, 5, 9, 12]), compute_centroid(kpts2[2, 5, 9, 12])
# btm1_c, btm2_c = compute_centroid(kpts1[9, 12, 10, 13]), compute_centroid(kpts2[9, 12, 10, 13])
# res_dist = dist_2D(top1_c[:2], top2_c[:2]) + dist_2D(mid1_c[:2], mid2_c[:2]) + dist_2D(btm1_c[:2], btm2_c[:2])
# res_dist /= 3
# return res_dist
return None
elif dst_type == '':
print("dst_typ not valid")
exit(-1)
def kpt_openpose_to_centernet(kpts):
"""
Args:
kpts:
Returns:
"""
#TO TEST
kpts_openpose = np.zeros((16, 3))
for i, point in enumerate(kpts):
idx_op = rev_pose_id_part[pose_id_part_openpose[i]]
kpts_openpose[idx_op] = [point[0], point[1], point[2]]
return kpts_openpose
def kpt_centernet_to_openpose(kpts):
"""
Args:
kpts:
Returns:
"""
#TO TEST
kpts_openpose = np.zeros((25, 3))
for i, point in enumerate(kpts):
idx_op = rev_pose_id_part_openpose[pose_id_part[i]]
kpts_openpose[idx_op] = [point[1], point[0], point[2]]
return kpts_openpose
def non_maxima_aux(det, kpt, threshold=15): # threshold in pxels
# print("A", kpt, "\n", len(kpt))
indexes_to_delete = []
if len(kpt) == 0 or len(det) == 0:
return [], []
if len(kpt) == 1 or len(det) == 1:
return det, kpt
kpt_res = kpt.copy()
det_res_aux = det.copy()
for i in range(0, len(kpt)):
for j in range(i, len(kpt)):
if i == j:
continue
dist = distance_skeletons(kpt[i], kpt[j], 'head_centroid')
# print("DIST", i, j, dist)
if dist < threshold:
if j not in indexes_to_delete:
indexes_to_delete.append(j)
# kpt_res.pop(j)
det_res = []
# print(indexes_to_delete)
indexes_to_delete = sorted(indexes_to_delete, reverse=True)
# print(len(kpt_res))
for index in indexes_to_delete:
kpt_res.pop(index)
det_res_aux = list(np.delete(det_res_aux, indexes_to_delete, axis=0))
det_res = np.array(det_res_aux)
return det_res, kpt_res
def compute_centroid_list(points):
"""
Args:
points:
Returns:
"""
x, y = [], []
for i in range(0, len(points), 3):
if points[i + 2] > 0.0: # confidence openpose
x.append(points[i])
y.append(points[i + 1])
if x == [] or y == []:
return [None, None]
mean_x = np.mean(x)
mean_y = np.mean(y)
return [mean_x, mean_y]
def normalize_wrt_maximum_distance_point(points, file_name=''):
centroid = compute_centroid_list(points)
# centroid = [points[0], points[1]]
# print(centroid)
# exit()
max_dist_x, max_dist_y = 0, 0
for i in range(0, len(points), 3):
if points[i + 2] > 0.0: # confidence openpose take only valid keypoints (if not detected (0, 0, 0)
distance_x = abs(points[i] - centroid[0])
distance_y = abs(points[i+1] - centroid[1])
# dist_aux.append(distance)
if distance_x > max_dist_x:
max_dist_x = distance_x
if distance_y > max_dist_y:
max_dist_y = distance_y
elif points[i + 2] == 0.0: # check for centernet people on borders with confidence 0
points[i] = 0
points[i+1] = 0
for i in range(0, len(points), 3):
if points[i + 2] > 0.0:
if max_dist_x != 0.0:
points[i] = (points[i] - centroid[0]) / max_dist_x
if max_dist_y != 0.0:
points[i + 1] = (points[i + 1] - centroid[1]) / max_dist_y
if max_dist_x == 0.0: # only one point valid with some confidence value so it become (0,0, confidence)
points[i] = 0.0
if max_dist_y == 0.0:
points[i + 1] = 0.0
return points
def retrieve_interest_points(kpts, detector):
"""
:param kpts:
:return:
"""
res_kpts = []
if detector == 'centernet':
face_points = [0, 1, 2, 3, 4]
for index in face_points:
res_kpts.append(kpts[index][1])
res_kpts.append(kpts[index][0])
res_kpts.append(kpts[index][2])
elif detector== 'zedcam':
face_points = [0, 14, 15, 16, 17]
for index in face_points:
res_kpts.append(kpts[index][0])
res_kpts.append(kpts[index][1])
res_kpts.append(kpts[index][2])
else:
# take only interest points (5 points of face)
face_points = [0, 16, 15, 18, 17]
for index in face_points:
res_kpts.append(kpts[index][0])
res_kpts.append(kpts[index][1])
res_kpts.append(kpts[index][2])
return res_kpts
def create_bbox_from_openpose_keypoints(data):
# from labels import pose_id_part_openpose
bbox = list()
ids = list()
kpt = list()
kpt_scores = list()
for person in data['people']:
ids.append(person['person_id'][0])
kpt_temp = list()
kpt_score_temp = list()
# create bbox with min max each dimension
x, y = [], []
for i in pose_id_part_openpose:
if i < 25:
# kpt and kpts scores
kpt_temp.append([int(person['pose_keypoints_2d'][i * 3]), int(person['pose_keypoints_2d'][(i * 3) + 1]),
person['pose_keypoints_2d'][(i * 3) + 2]])
kpt_score_temp.append(person['pose_keypoints_2d'][(i * 3) + 2])
# check confidence != 0
if person['pose_keypoints_2d'][(3 * i) + 2]!=0:
x.append(int(person['pose_keypoints_2d'][3 * i]))
y.append(int(person['pose_keypoints_2d'][(3 * i) + 1]))
kpt_scores.append(kpt_score_temp)
kpt.append(kpt_temp)
xmax = max(x)
xmin = min(x)
ymax = max(y)
ymin = min(y)
bbox.append([xmin, ymin, xmax, ymax, 1]) # last value is for compatibility of centernet
return bbox, kpt, kpt_scores # not to use scores
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
"""
alist.sort(key=natural_keys) sorts in human order
http://nedbatchelder.com/blog/200712/human_sorting.html
(See Toothy's implementation in the comments)
"""
import re
return [atoi(c) for c in re.split(r'(\d+)', text)] |