File size: 14,200 Bytes
9d11120
 
 
 
 
 
 
 
 
 
 
 
 
20f7ff3
42180f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d11120
 
 
 
 
 
 
 
 
 
 
eea32c6
e94d136
9d11120
 
 
 
 
42180f1
9d11120
 
 
42180f1
 
 
 
 
 
 
 
9d11120
42180f1
9d11120
 
20f7ff3
9d11120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42180f1
9d11120
42180f1
9d11120
42180f1
9d11120
 
 
42180f1
ccd2946
42180f1
ccd2946
42180f1
e94d136
9d11120
 
 
 
 
 
eea32c6
9d11120
 
 
 
42180f1
 
 
 
e94d136
42180f1
 
e94d136
42180f1
 
 
 
 
 
 
 
9d11120
 
 
 
20f7ff3
e94d136
42180f1
 
 
 
 
 
9d11120
 
eea32c6
9f8136b
9d11120
 
6e7ba4c
 
 
 
 
 
 
 
 
9f8136b
9d11120
9f8136b
9d11120
 
 
 
42180f1
9d11120
 
 
ccd2946
20f7ff3
ccd2946
 
 
42180f1
 
 
 
 
 
 
 
186a6e0
42180f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186a6e0
42180f1
 
 
 
 
 
 
 
 
 
e94d136
 
 
 
 
 
42180f1
 
 
 
 
 
e94d136
42180f1
 
e94d136
42180f1
 
e94d136
42180f1
e94d136
42180f1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import gdown
import gradio as gr

import logging
import os

import cv2
import numpy as np
import tensorflow as tf

from ai.detection import detect
from laeo_per_frame.interaction_per_frame_uncertainty import LAEO_computation
from utils.hpe import hpe, project_ypr_in2d
from utils.img_util import resize_preserving_ar, percentage_to_pixel, draw_key_points_pose, \
    visualize_vector, draw_axis, draw_axis_3d, draw_cones

# <a href="https://malga.unige.it/" target="_blank"><nobr>Lab MaLGa UniGe</nobr></a>
WEBSITE = """
<div class="embed_hidden">
<h1 style='text-align: center'>Head Pose Estimation and LAEO computation </h1>
<h2 style='text-align: center'>
<a target="_blank" href="https://github.com/Malga-Vision/LAEO_demo"> <nobr> Code for LAEO </nobr></a>
<br>
<a target="_blank" href="https://github.com/Malga-Vision/HHP-Net/tree/master"> <nobr> Code for HPE </nobr></a>

</h2>
<h2 style='text-align: center'>
<nobr><a href="https://github.com/Malga-Vision" target="_blank"><nobr>MaLGa Vision GitHub</nobr></a> &emsp;</nobr>
</h2>

<h3 style="text-align:center;">
<a href="https://fede1995.github.io/" target="_blank"><nobr>Federico FT</nobr></a> &emsp;
</h3>

<h2> Description </h2>
<p>
This space illustrates a method for Head Pose Estimation and also LAEO detection. The code is based on experiments and research carried out at the UNiversity of Genoa (Italy) in the MaLGa Laboratory. 
This demo has been set up by Federico Figari Tomenotti.
DISCLAIMER: does not work properly on smartphones and sometimes on Safari web browser.
</p>
<h2> Usage </h2>
<p>
The flags allow the user to choose what to display on the result image, and to change the sensitivity for the person detection algorithm.
The Head Pose orientation can be described only as one vector (arrow) or a triplet of angles: yaw, pitch and roll projected on the image plane.
The uncertainty result is the mean of the uncertainty compute on the three angles.
The run botton is needed to run the demo on an image after changing flag settings.
For every detailed explanation on the algorithms refer to the paper which will be out soon.
</p>

</div>
"""

WEBSITE_citation = """
<h2 style='text-align: center'>
Citation
</h2>

If you find this code useful for your research, please use the following BibTeX entry.

``` 
@inproceedings{cantarini2022hhp,
  title={HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty},
  author={Cantarini, Giorgio and Tomenotti, Federico Figari and Noceti, Nicoletta and Odone, Francesca},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on applications of computer vision},
  pages={3521--3530},
  year={2022}
}
```"""


def load_image(camera, ):
    # Capture the video frame by frame
    try:
        ret, frame = camera.read()
        return True, frame
    except:
        logging.Logger('Error reading frame')
        return False, None


def demo_play(img, laeo=True, rgb=False, show_keypoints=True, only_face=False, Head_Pose_representation='Vector', detection_threshold=0.45, thickness_points:int=None, thickness_lines:int=2, size_plots:int=50):
    # webcam in use

    # gpus = tf.config.list_physical_devices('GPU')

    # img = np.array(frame)


    img_resized, new_old_shape = resize_preserving_ar(img, input_shape_od_model)

    if not rgb:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # covert at grey scale
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # it is still grey scale but with 3 channels to add the colours of the points and lines
        # img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    else: # if RGB
        # img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        pass

    print('inference centernet')
    detections, elapsed_time = detect(model, img_resized, detection_threshold,
                                      new_old_shape)  # detection classes boxes scores
    # probably to draw on resized
    # img_with_detections = draw_detections(img_resized, detections, max_boxes_to_draw, None, None, None)
    # cv2.imshow("aa", img_with_detections)

    det, kpt = percentage_to_pixel(img.shape, detections['detection_boxes'], detections['detection_scores'],
                                   detections['detection_keypoints'], detections['detection_keypoint_scores'])

    # center_xy, yaw, pitch, roll = head_pose_estimation(kpt, 'centernet', gaze_model=gaze_model)

    # _________ extract hpe and print to img
    people_list = []

    print('inferece hpe')

    for j, kpt_person in enumerate(kpt):
        yaw, pitch, roll, tdx, tdy = hpe(gaze_model, kpt_person, detector='centernet')

        # img = draw_axis_3d(yaw[0].numpy()[0], pitch[0].numpy()[0], roll[0].numpy()[0], image=img, tdx=tdx, tdy=tdy,
        #                    size=50)

        people_list.append({'yaw'      : yaw[0].numpy()[0],
                            'yaw_u'    : yaw[0].numpy()[1],
                            'pitch'    : pitch[0].numpy()[0],
                            'pitch_u'  : pitch[0].numpy()[1],
                            'roll'     : roll[0].numpy()[0],
                            'roll_u'   : roll[0].numpy()[1],
                            'center_xy': [tdx, tdy]
                            })


    if show_keypoints:
        # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        for i in range(len(det)):
            # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            img = draw_key_points_pose(img, kpt[i], only_face=only_face, thickness_points=thickness_points, thickness_lines=thickness_lines)

    # call LAEO
    clip_uncertainty = 0.5
    binarize_uncertainty = False
    if laeo:
        interaction_matrix = LAEO_computation(people_list, clipping_value=clip_uncertainty,
                                              clip=binarize_uncertainty)
    else:
        interaction_matrix = np.zeros((len(people_list), len(people_list)))
    # coloured arrow print per person

    print(f'Head pose representation: {Head_Pose_representation}')
    def visualise_hpe(yaw, pitch, roll, image=None, tdx=None, tdy=None, size=50, yaw_uncertainty=-1, pitch_uncertainty=-1, roll_uncertainty=-1, openpose=False, title="", color=(255, 0, 0)):
        if str(Head_Pose_representation).lower() == 'vector':
            vector = project_ypr_in2d(person['yaw'], person['pitch'], person['roll'])
            image = visualize_vector(image, [tdx, tdy], vector, title=title, color=color, thickness_lines=thickness_lines)
            return image
        elif str(Head_Pose_representation).lower() == 'axis':
           image = draw_axis_3d(yaw, pitch, roll, image=image, tdx=tdx, tdy=tdy, size=size, thickness_lines=thickness_lines)
           return image
        elif str(Head_Pose_representation).lower() == 'cone':
            _, image = draw_cones(yaw, pitch, roll, unc_yaw=yaw_uncertainty, unc_pitch=pitch_uncertainty, unc_roll=roll_uncertainty, image=image, tdx=tdx, tdy=tdy, size=size)
            return image
        else:
            return image


    for index, person in enumerate(people_list):
        green = round((max(interaction_matrix[index, :])) * 255)
        colour = (0, green, 0)
        if green < 40:
            colour = (255, 0, 0)
        img = visualise_hpe(person['yaw'], person['pitch'], person['roll'], image=img, tdx=person['center_xy'][0], tdy=person['center_xy'][1], size=size_plots, yaw_uncertainty=person['yaw_u'], pitch_uncertainty=person['pitch_u'], roll_uncertainty=person['roll_u'], title="", color=colour)
        # vector = project_ypr_in2d(person['yaw'], person['pitch'], person['roll'])
        # img = visualize_vector(img, person['center_xy'], vector, title="",
        #                        color=colour)
    uncertainty_mean = [i['yaw_u'] + i['pitch_u'] + i['roll_u'] for i in people_list]
    uncertainty_mean_str =  ''.join([str(round(i, 2)) + ' ' for i in uncertainty_mean])
    return img, uncertainty_mean_str


if __name__=='__main__':
    if not os.path.exists("LAEO_demo_data"):
        gdown.download_folder("https://drive.google.com/drive/folders/1nQ1Cb_tBEhWxy183t-mIcVH7AhAfa6NO?usp=drive_link",
                              use_cookies=False)

    # Get the list of all files and directories
    path = "LAEO_demo_data/examples"
    dir_list = os.listdir(path)
    print("Files and directories in '", path, "' :")

    # prints all files
    print(dir_list)

    gaze_model_path = 'LAEO_demo_data/head_pose_estimation'
    gaze_model = tf.keras.models.load_model(gaze_model_path, custom_objects={"tf": tf})
    path_to_model = 'LAEO_demo_data/keypoint_detector/centernet_hg104_512x512_kpts_coco17_tpu-32'
    model = tf.saved_model.load(os.path.join(path_to_model, 'saved_model'))

    input_shape_od_model = (512, 512)
    # params
    min_score_thresh, max_boxes_to_draw, min_distance = .25, 50, 1.5

    print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

    function_to_call = demo_play
    # outputs = gr.Image(shape=(512, 512))
    live = True
    title = "Head Pose Estimation and LAEO"

    print(os.getcwd())

    with gr.Blocks() as demo:
        gr.Markdown(WEBSITE)
        with gr.Tab("demo_webcam"):
            with gr.Row():
                with gr.Column():
                    input_img = gr.Image(label="Input Image", source="webcam")
                    button = gr.Button(label="RUN", type="default")
                    laeo = gr.Checkbox(value=True, label="LAEO", info="Compute and display LAEO")
                    rgb = gr.Checkbox(value=False, label="rgb", info="Display output on W/B image")
                    show_keypoints = gr.Checkbox(value=True, label="show_keypoints", info="Display keypoints on image")
                    show_keypoints_only_face = gr.Checkbox(value=True, label="show_keypoints_only_face",
                                                              info="Display only face keypoints on image")
                    Head_Pose_representation = gr.Radio(["Vector", "Axis", "None"], label="Head_Pose_representation",
                                                        info="Which representation to show", value="Vector")
                    detection_threshold = gr.Slider(0.01, 1, value=0.45, step=0.01, interactive=True,
                                                    label="detection_threshold", info="Choose in [0, 1]")

                with gr.Column():
                    outputs = gr.Image(label="Output Image", shape=(512, 512))
                    uncert = gr.Label(label="Uncertainty", value="0.0")

        input_img.change(function_to_call, inputs=[input_img, laeo, rgb, show_keypoints, show_keypoints_only_face,
                                                       Head_Pose_representation, detection_threshold], outputs=[outputs, uncert])
        button.click(function_to_call, inputs=[input_img, laeo, rgb, show_keypoints, show_keypoints_only_face,
                                                       Head_Pose_representation, detection_threshold], outputs=[outputs, uncert])

        with gr.Tab("demo_upload"):
            with gr.Row():
                with gr.Column():
                    input_img = gr.Image(label="Input Image", source="upload")
                    button = gr.Button(label="RUN", type="default")
                    laeo = gr.Checkbox(value=True, label="LAEO", info="Compute and display LAEO")
                    rgb = gr.Checkbox(value=False, label="rgb", info="Display output on W/B image")
                    show_keypoints = gr.Checkbox(value=True, label="show_keypoints", info="Display keypoints on image")
                    show_keypoints_only_face = gr.Checkbox(value=True, label="show_keypoints_only_face",
                                                           info="Display only face keypoints on image")
                    Head_Pose_representation = gr.Radio(["Vector", "Axis", "None"],
                                                        label="Head_Pose_representation",
                                                        info="Which representation to show", value="Vector")
                    detection_threshold = gr.Slider(0.01, 1, value=0.45, step=0.01, interactive=True,
                                                    label="detection_threshold", info="Choose in [0, 1]")
                    thickness_points = gr.Slider(1,100, value=1, step=1, interactive=True,
                                                 label='key point dimension', info='key point dimension in result')
                    thickness_lines = gr.Slider(0, 20, value=2, step=1, interactive=True,
                                                 label='arrows thickness', info='lines between keepoints dimension')
                    size_elements = gr.Slider(10, 100, value=50, step=1, interactive=True,
                                            label='size of displayed axis', info='size of displayed axis and cones')
                with gr.Column():
                    outputs = gr.Image(height=238, width=585, label="Output Image")
                    uncert = gr.Label(label="Uncertainty", value="0.0")
                    examples_text =gr.Markdown("## Image Examples")
                    examples = gr.Examples([["LAEO_demo_data/examples/1.jpg"], ["LAEO_demo_data/examples/300wlp_0.png"],
                                ["LAEO_demo_data/examples/AWFL_2.jpg"],
                                ["LAEO_demo_data/examples/BIWI_3.png"]], inputs=[input_img, True, False, True, True, "Vector", 0.45])  # add all other flags

        input_img.change(function_to_call, inputs=[input_img, laeo, rgb, show_keypoints, show_keypoints_only_face,
                                                   Head_Pose_representation, detection_threshold, thickness_points, thickness_lines, size_elements],
                         outputs=[outputs, uncert])
        button.click(function_to_call, inputs=[input_img, laeo, rgb, show_keypoints, show_keypoints_only_face,
                                               Head_Pose_representation, detection_threshold, thickness_points, thickness_lines, size_elements],
                     outputs=[outputs, uncert])
        # TODO create a function only to redraw last result if changed some sliders etc

        gr.Markdown(WEBSITE_citation)

    demo.launch()