File size: 12,369 Bytes
d729462
716a46f
425aca2
e907ad5
962e70a
 
 
e907ad5
716a46f
 
 
 
 
 
 
 
 
 
7bcad39
7b41aea
716a46f
962e70a
8dabaa3
716a46f
 
 
 
 
 
 
 
2ab1cce
716a46f
 
 
 
8dabaa3
716a46f
8dabaa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716a46f
 
 
 
 
 
 
 
 
 
 
 
 
 
ee565de
5a1f027
ee565de
 
 
962e70a
 
 
 
ee565de
8dabaa3
857c5a8
b040297
857c5a8
9d98d2c
857c5a8
 
 
 
 
289ac0c
 
 
 
 
 
 
2ab1cce
289ac0c
 
 
 
 
 
 
 
 
 
 
5a1f027
289ac0c
 
 
962e70a
289ac0c
 
 
 
 
 
 
 
 
 
 
 
716a46f
289ac0c
8dabaa3
289ac0c
 
 
 
 
 
8dabaa3
289ac0c
 
d729462
289ac0c
 
2ab1cce
289ac0c
 
d729462
289ac0c
 
 
 
 
81255d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024f8c1
81255d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab1cce
81255d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024f8c1
81255d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024f8c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import gradio as gr
import os
import getpass
from pathlib import Path
import re
from unidecode import unidecode
import chromadb
from langchain_community.vectorstores import FAISS, ScaNN, Milvus
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
import torch
api_token = os.getenv("HF_TOKEN")



list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]  
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database
def create_db(splits, collection_name, db_type):
    embedding = HuggingFaceEmbeddings()
    
    if db_type == "ChromaDB":
        new_client = chromadb.EphemeralClient()
        vectordb = Chroma.from_documents(
            documents=splits,
            embedding=embedding,
            client=new_client,
            collection_name=collection_name,
        )
    elif db_type == "FAISS":
        vectordb = FAISS.from_documents(
            documents=splits,
            embedding=embedding
        )
    elif db_type == "ScaNN":
        vectordb = ScaNN.from_documents(
            documents=splits,
            embedding=embedding
        )
    elif db_type == "Milvus":
        vectordb = Milvus.from_documents(
            documents=splits,
            embedding=embedding,
            collection_name=collection_name,
        )
    else:
        raise ValueError(f"Unsupported vector database type: {db_type}")
    
    return vectordb

# Load vector database
def load_db():
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma(
        embedding_function=embedding)
    return vectordb

# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    
    progress(0.5, desc="Initializing HF Hub...")

    
    if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
        llm = HuggingFaceEndpoint(
            repo_id=llm_model,
            huggingfacehub_api_token=api_token,
            temperature=temperature,
            max_new_tokens=max_tokens,
            top_k=top_k,
        )
   
    else:
        
        llm = HuggingFaceEndpoint(
            repo_id=llm_model,
            huggingfacehub_api_token=api_token,
            temperature=temperature,
            max_new_tokens=max_tokens,
            top_k=top_k,        
        )
    
    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    retriever = vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain

# Generate collection name for vector database
def create_collection_name(filepath):
    collection_name = Path(filepath).stem
    collection_name = collection_name.replace(" ", "-") 
    collection_name = unidecode(collection_name)
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
    collection_name = collection_name[:50]
    if len(collection_name) < 3:
        collection_name = collection_name + 'xyz'
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    print('Filepath: ', filepath)
    print('Collection name: ', collection_name)
    return collection_name

# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, db_type, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    progress(0.1, desc="Creating collection name...")
    collection_name = create_collection_name(list_file_path[0])
    progress(0.25, desc="Loading document...")
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    progress(0.5, desc="Generating vector database...")
    vector_db = create_db(doc_splits, collection_name, db_type)
    progress(0.9, desc="Done!")
    return vector_db, collection_name, "Complete!"

def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    llm_name = list_llm[llm_option]
    print("llm_name: ", llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"

def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
   
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if "Helpful Answer:" in response_answer:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def upload_file(file_obj):
    list_file_path = []
    for file in file_obj:
        list_file_path.append(file.name)
    return list_file_path

def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        
        gr.Markdown(
        """<center><h2>PDF-based chatbot</center></h2>
        <h3>Ask any questions about your PDF documents</h3>""")
        gr.Markdown(
        """<b>Note:</b> Esta é a lucIAna, primeira Versão da IA para seus PDF documentos. 
        Este chatbot leva em consideração perguntas anteriores ao gerar respostas (por meio de memória conversacional) e inclui referências a documentos para fins de clareza.
        """)
        
        with gr.Tab("Step 1 - Upload PDF"):
            with gr.Row():
                document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
        
        with gr.Tab("Step 2 - Process document"):
            with gr.Row():
                db_type_radio = gr.Radio(["ChromaDB", "FAISS", "ScaNN", "Milvus"], label="Vector database type", value="ChromaDB", type="value", info="Choose your vector database")
            with gr.Accordion("Advanced options - Document text splitter", open=False):
                with gr.Row():
                    slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
                with gr.Row():
                    slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
            with gr.Row():
                db_progress = gr.Textbox(label="Vector database initialization", value="None")
            with gr.Row():
                db_btn = gr.Button("Generate vector database")
        
        with gr.Tab("Step 3 - Initialize QA chain"):
            with gr.Row():
                llm_btn = gr.Radio(list_llm_simple, 
                    label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
            with gr.Accordion("Advanced options - LLM model", open=False):
                with gr.Row():
                    slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                with gr.Row():
                    slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                with gr.Row():
                    slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            with gr.Row():
                llm_progress = gr.Textbox(value="None", label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Initialize Question Answering chain")

        with gr.Tab("Step 4 - Chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Advanced - Document references", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                    source1_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                    source2_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                    source3_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit message")
                clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
            
        # Preprocessing events
        db_btn.click(initialize_database, 
            inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio], 
            outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(initialize_LLM, 
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], 
            outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], 
            inputs=None, 
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)

        # Chatbot events
        msg.submit(conversation, 
            inputs=[qa_chain, msg, chatbot], 
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
        submit_btn.click(conversation, 
            inputs=[qa_chain, msg, chatbot], 
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], 
            inputs=None, 
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()