File size: 4,879 Bytes
3590500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""Utils for monoDepth.
"""
import sys
import re
import numpy as np
import cv2
import torch


def read_pfm(path):
    """Read pfm file.

    Args:
        path (str): path to file

    Returns:
        tuple: (data, scale)
    """
    with open(path, "rb") as file:

        color = None
        width = None
        height = None
        scale = None
        endian = None

        header = file.readline().rstrip()
        if header.decode("ascii") == "PF":
            color = True
        elif header.decode("ascii") == "Pf":
            color = False
        else:
            raise Exception("Not a PFM file: " + path)

        dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
        if dim_match:
            width, height = list(map(int, dim_match.groups()))
        else:
            raise Exception("Malformed PFM header.")

        scale = float(file.readline().decode("ascii").rstrip())
        if scale < 0:
            # little-endian
            endian = "<"
            scale = -scale
        else:
            # big-endian
            endian = ">"

        data = np.fromfile(file, endian + "f")
        shape = (height, width, 3) if color else (height, width)

        data = np.reshape(data, shape)
        data = np.flipud(data)

        return data, scale


def write_pfm(path, image, scale=1):
    """Write pfm file.

    Args:
        path (str): pathto file
        image (array): data
        scale (int, optional): Scale. Defaults to 1.
    """

    with open(path, "wb") as file:
        color = None

        if image.dtype.name != "float32":
            raise Exception("Image dtype must be float32.")

        image = np.flipud(image)

        if len(image.shape) == 3 and image.shape[2] == 3:  # color image
            color = True
        elif (
            len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
        ):  # greyscale
            color = False
        else:
            raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")

        file.write("PF\n" if color else "Pf\n".encode())
        file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))

        endian = image.dtype.byteorder

        if endian == "<" or endian == "=" and sys.byteorder == "little":
            scale = -scale

        file.write("%f\n".encode() % scale)

        image.tofile(file)


def read_image(path):
    """Read image and output RGB image (0-1).

    Args:
        path (str): path to file

    Returns:
        array: RGB image (0-1)
    """
    img = cv2.imread(path)

    if img.ndim == 2:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0

    return img


def resize_image(img):
    """Resize image and make it fit for network.

    Args:
        img (array): image

    Returns:
        tensor: data ready for network
    """
    height_orig = img.shape[0]
    width_orig = img.shape[1]

    if width_orig > height_orig:
        scale = width_orig / 384
    else:
        scale = height_orig / 384

    height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
    width = (np.ceil(width_orig / scale / 32) * 32).astype(int)

    img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)

    img_resized = (
        torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
    )
    img_resized = img_resized.unsqueeze(0)

    return img_resized


def resize_depth(depth, width, height):
    """Resize depth map and bring to CPU (numpy).

    Args:
        depth (tensor): depth
        width (int): image width
        height (int): image height

    Returns:
        array: processed depth
    """
    depth = torch.squeeze(depth[0, :, :, :]).to("cpu")

    depth_resized = cv2.resize(
        depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
    )

    return depth_resized

def write_depth(path, depth, grayscale, bits=1):
    """Write depth map to png file.

    Args:
        path (str): filepath without extension
        depth (array): depth
        grayscale (bool): use a grayscale colormap?
    """
    if not grayscale:
        bits = 1

    if not np.isfinite(depth).all():
        depth=np.nan_to_num(depth, nan=0.0, posinf=0.0, neginf=0.0)
        print("WARNING: Non-finite depth values present")

    depth_min = depth.min()
    depth_max = depth.max()

    max_val = (2**(8*bits))-1

    if depth_max - depth_min > np.finfo("float").eps:
        out = max_val * (depth - depth_min) / (depth_max - depth_min)
    else:
        out = np.zeros(depth.shape, dtype=depth.dtype)

    if not grayscale:
        out = cv2.applyColorMap(np.uint8(out), cv2.COLORMAP_INFERNO)

    if bits == 1:
        cv2.imwrite(path + ".png", out.astype("uint8"))
    elif bits == 2:
        cv2.imwrite(path + ".png", out.astype("uint16"))

    return