File size: 5,226 Bytes
1e10b23
 
 
 
 
 
 
 
 
 
e733852
1e10b23
 
 
 
 
 
 
 
e733852
1e10b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import pickle
import tensorflow as tf
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.saving import load_model
import numpy as np
import cv2
from PIL import Image



st.title('Deep Learning Classifier App')
task = st.selectbox('Select Task', ['Choose one','Sentiment Classification', 'Tumor Detection'])

if task=='Tumor Detection':
    st.subheader('Tumor Detection with CNN')
    # CNN
    cnn_model = load_model("cnn_model.h5")

    img = st.file_uploader('Upload image:', type=['jpeg', 'jpg', 'png'])

    def cnn_make_prediction(img,model):
        img=Image.open(img)
        img=img.resize((128,128))
        img=np.array(img)
        input_img = np.expand_dims(img, axis=0)
        res = model.predict(input_img)
        if res:
            return"Tumor Detected"
        else:
            return"No Tumor Detected"
                
    if img is not None:
        st.image(img, caption = "Image preview")
        if st.button('Submit'):
            pred = cnn_make_prediction(img, cnn_model)
            st.write(pred)


if task=='Sentiment Classification':
    arcs = ['Perceptron', 'Backpropagation', 'DNN', 'RNN', 'LSTM']
    arc = st.radio('Pick one:', arcs, horizontal=True)

    if arc == arcs[0]:
        # Perceptron
        with open("ppn_model.pkl",'rb') as file:
            perceptron = pickle.load(file)
        with open("ppn_tokeniser.pkl",'rb') as file:
            ppn_tokeniser = pickle.load(file)

        st.subheader('Movie Review Classification using Perceptron')
        inp = st.text_area('Enter message')
        
        def ppn_make_predictions(inp, model):
            encoded_inp = ppn_tokeniser.texts_to_sequences([inp])
            padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500)
            res = model.predict(padded_inp)
            if res:
                return "Negative"
            else:
                return "Positive"       
        
        if st.button('Check'):
            pred = ppn_make_predictions([inp], perceptron)
            st.write(pred)

    elif arc == arcs[1]:
        # BackPropogation
        with open("bp_model.pkl",'rb') as file:
            backprop = pickle.load(file)
        with open("bp_tokeniser.pkl",'rb') as file:
            bp_tokeniser = pickle.load(file)

        st.subheader('Movie Review Classification using Backpropagation')
        inp = st.text_area('Enter message')
        
        def bp_make_predictions(inp, model):
            encoded_inp = bp_tokeniser.texts_to_sequences([inp])
            padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500)
            res = model.predict(padded_inp)
            if res:
                return "Negative"
            else:
                return "Positive"        
        
        if st.button('Check'):
            pred = bp_make_predictions([inp], backprop)
            st.write(pred)


    elif arc == arcs[2]:
        # DNN
        dnn_model = load_model("dnn_model.h5")
        with open("dnn_tokeniser.pkl",'rb') as file:
            dnn_tokeniser = pickle.load(file)

        st.subheader('SMS Spam Classification using DNN')
        inp = st.text_area('Enter message')
        
        def dnn_make_predictions(inp, model):
            encoded_inp = dnn_tokeniser.texts_to_sequences(inp)
            padded_inp = sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
            res = (model.predict(padded_inp) > 0.5).astype("int32")
            if res:
                return "Spam"
            else:
                return "Ham"     
        
        if st.button('Check'):
            pred = dnn_make_predictions([inp], dnn_model)
            st.write(pred)


    elif arc == arcs[3]:
        # RNN 
        rnn_model = load_model("rnn_model.h5") 

        with open("rnn_tokeniser.pkl",'rb') as file:
            rnn_tokeniser = pickle.load(file)

        st.subheader('SMS Spam Classification using RNN')
        inp = st.text_area('Enter message')
        
        def rnn_make_predictions(inp, model):
            encoded_inp = rnn_tokeniser.texts_to_sequences(inp)
            padded_inp = sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
            res = (model.predict(padded_inp) > 0.5).astype("int32")
            if res:
                return "Spam"
            else:
                return "Ham"


        if st.button('Check'):
            pred = rnn_make_predictions([inp], rnn_model)
            st.write(pred)
    

    elif arc == arcs[4]:
        # LSTM
        lstm_model = load_model("lstm_model.h5") 

        with open("lstm_tokeniser.pkl",'rb') as file:
            lstm_tokeniser = pickle.load(file)

        st.subheader('Movie Review Classification using LSTM')
        inp = st.text_area('Enter message')

        def lstm_make_predictions(inp, model):
            inp = lstm_tokeniser.texts_to_sequences(inp)
            inp = sequence.pad_sequences(inp, maxlen=500)
            res = (model.predict(inp) > 0.5).astype("int32")
            if res:
                return "Negative"
            else:
                return "Positive"

        if st.button('Check'):
            pred = lstm_make_predictions([inp], lstm_model)
            st.write(pred)