Spaces:
Runtime error
Runtime error
File size: 5,226 Bytes
1e10b23 e733852 1e10b23 e733852 1e10b23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import streamlit as st
import pickle
import tensorflow as tf
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.saving import load_model
import numpy as np
import cv2
from PIL import Image
st.title('Deep Learning Classifier App')
task = st.selectbox('Select Task', ['Choose one','Sentiment Classification', 'Tumor Detection'])
if task=='Tumor Detection':
st.subheader('Tumor Detection with CNN')
# CNN
cnn_model = load_model("cnn_model.h5")
img = st.file_uploader('Upload image:', type=['jpeg', 'jpg', 'png'])
def cnn_make_prediction(img,model):
img=Image.open(img)
img=img.resize((128,128))
img=np.array(img)
input_img = np.expand_dims(img, axis=0)
res = model.predict(input_img)
if res:
return"Tumor Detected"
else:
return"No Tumor Detected"
if img is not None:
st.image(img, caption = "Image preview")
if st.button('Submit'):
pred = cnn_make_prediction(img, cnn_model)
st.write(pred)
if task=='Sentiment Classification':
arcs = ['Perceptron', 'Backpropagation', 'DNN', 'RNN', 'LSTM']
arc = st.radio('Pick one:', arcs, horizontal=True)
if arc == arcs[0]:
# Perceptron
with open("ppn_model.pkl",'rb') as file:
perceptron = pickle.load(file)
with open("ppn_tokeniser.pkl",'rb') as file:
ppn_tokeniser = pickle.load(file)
st.subheader('Movie Review Classification using Perceptron')
inp = st.text_area('Enter message')
def ppn_make_predictions(inp, model):
encoded_inp = ppn_tokeniser.texts_to_sequences([inp])
padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500)
res = model.predict(padded_inp)
if res:
return "Negative"
else:
return "Positive"
if st.button('Check'):
pred = ppn_make_predictions([inp], perceptron)
st.write(pred)
elif arc == arcs[1]:
# BackPropogation
with open("bp_model.pkl",'rb') as file:
backprop = pickle.load(file)
with open("bp_tokeniser.pkl",'rb') as file:
bp_tokeniser = pickle.load(file)
st.subheader('Movie Review Classification using Backpropagation')
inp = st.text_area('Enter message')
def bp_make_predictions(inp, model):
encoded_inp = bp_tokeniser.texts_to_sequences([inp])
padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500)
res = model.predict(padded_inp)
if res:
return "Negative"
else:
return "Positive"
if st.button('Check'):
pred = bp_make_predictions([inp], backprop)
st.write(pred)
elif arc == arcs[2]:
# DNN
dnn_model = load_model("dnn_model.h5")
with open("dnn_tokeniser.pkl",'rb') as file:
dnn_tokeniser = pickle.load(file)
st.subheader('SMS Spam Classification using DNN')
inp = st.text_area('Enter message')
def dnn_make_predictions(inp, model):
encoded_inp = dnn_tokeniser.texts_to_sequences(inp)
padded_inp = sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
res = (model.predict(padded_inp) > 0.5).astype("int32")
if res:
return "Spam"
else:
return "Ham"
if st.button('Check'):
pred = dnn_make_predictions([inp], dnn_model)
st.write(pred)
elif arc == arcs[3]:
# RNN
rnn_model = load_model("rnn_model.h5")
with open("rnn_tokeniser.pkl",'rb') as file:
rnn_tokeniser = pickle.load(file)
st.subheader('SMS Spam Classification using RNN')
inp = st.text_area('Enter message')
def rnn_make_predictions(inp, model):
encoded_inp = rnn_tokeniser.texts_to_sequences(inp)
padded_inp = sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
res = (model.predict(padded_inp) > 0.5).astype("int32")
if res:
return "Spam"
else:
return "Ham"
if st.button('Check'):
pred = rnn_make_predictions([inp], rnn_model)
st.write(pred)
elif arc == arcs[4]:
# LSTM
lstm_model = load_model("lstm_model.h5")
with open("lstm_tokeniser.pkl",'rb') as file:
lstm_tokeniser = pickle.load(file)
st.subheader('Movie Review Classification using LSTM')
inp = st.text_area('Enter message')
def lstm_make_predictions(inp, model):
inp = lstm_tokeniser.texts_to_sequences(inp)
inp = sequence.pad_sequences(inp, maxlen=500)
res = (model.predict(inp) > 0.5).astype("int32")
if res:
return "Negative"
else:
return "Positive"
if st.button('Check'):
pred = lstm_make_predictions([inp], lstm_model)
st.write(pred) |