File size: 1,588 Bytes
fbc97ae 6300104 155e5dc 6300104 155e5dc 6300104 155e5dc 6300104 155e5dc 0dd9a9d 155e5dc 9b28f61 0dd9a9d 155e5dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
from inference import *
import gradio as gr
import glob
def gradio_app(image_path):
"""Helper function to run inference on provided image"""
predictions, out_pil = run_inference(image_path)
return out_pil
# -----------------------------------------------------------------------------
# GRADIO APP
# -----------------------------------------------------------------------------
title = "MBARI Monterey Bay Benthic Supercategory"
description = "Gradio demo for MBARI Monterey Bay Benthic Supercategory: This " \
"is a RetinaNet model fine-tuned from the Detectron2 object " \
"detection platform's ResNet backbone to identify 20 benthic " \
"supercategories drawn from MBARI's remotely operated vehicle " \
"image data collected in Monterey Bay off the coast of Central " \
"California. The data is drawn from FathomNet and consists of " \
"32779 images that contain a total of 80683 localizations. The " \
"model was trained on an 85/15 train/validation split at the " \
"image level. DOI: 10.5281/zenodo.5571043. "
examples = glob.glob("images/*.png")
gr.Interface(gradio_app,
inputs=[gr.inputs.Image(type="filepath")],
outputs=gr.outputs.Image(type="pil"),
enable_queue=True,
title=title,
description=description,
examples=examples).launch()
|