File size: 3,682 Bytes
5139c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of the model checkpoint at xlm-roberta-large were not used when initializing XLMRobertaModel: ['lm_head.layer_norm.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.bias', 'lm_head.decoder.weight', 'lm_head.layer_norm.bias']\n",
      "- This IS expected if you are initializing XLMRobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing XLMRobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "torch.Size([4, 768])\n"
     ]
    }
   ],
   "source": [
    "from multilingual_clip import pt_multilingual_clip\n",
    "import transformers\n",
    "\n",
    "texts = [\n",
    "    'Three blind horses listening to Mozart.',\n",
    "    'Älgen är skogens konung!',\n",
    "    'Wie leben Eisbären in der Antarktis?',\n",
    "    'Вы знали, что все белые медведи левши?'\n",
    "]\n",
    "model_name = 'M-CLIP/XLM-Roberta-Large-Vit-L-14'\n",
    "\n",
    "# Load Model & Tokenizer\n",
    "model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)\n",
    "tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)\n",
    "\n",
    "embeddings = model.forward(texts, tokenizer)\n",
    "print(embeddings.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "texts = [\n",
    "    'Aku sayang kamu',\n",
    "    'Aku benci kamu',\n",
    "]\n",
    "embeddings = model.forward(texts, tokenizer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "embeddings_1, embeddings_2 = embeddings\n",
    "embeddings_1 = embeddings_1.cpu().detach().numpy()\n",
    "embeddings_2 = embeddings_2.cpu().detach().numpy()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from numpy.linalg import norm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.967305\n"
     ]
    }
   ],
   "source": [
    "cosine = np.dot(embeddings_1,embeddings_2)/(norm(embeddings_1)*norm(embeddings_2))\n",
    "print(cosine)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}