File size: 16,801 Bytes
569c655
 
e1c6a58
 
569c655
 
e1c6a58
569c655
 
 
fdced54
569c655
e1c6a58
569c655
 
 
2aa6d5a
631e806
2aa6d5a
8ebe6ba
 
 
 
 
 
 
 
 
 
 
 
fbb9bcf
01fb678
569c655
 
 
 
fbb9bcf
4441bb9
fbb9bcf
 
 
 
569c655
fbb9bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569c655
fbb9bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569c655
fbb9bcf
 
 
 
 
 
 
 
 
569c655
fbb9bcf
 
 
569c655
fbb9bcf
 
 
 
 
 
 
569c655
fbb9bcf
 
 
 
 
 
 
569c655
fbb9bcf
569c655
fbb9bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107dea
 
fbb9bcf
 
4441bb9
37095c4
 
 
 
 
0d04590
 
37095c4
35f32fc
 
 
74c73a7
 
3e5ce2e
 
bfe8a5b
 
 
569c655
 
3e5ce2e
 
569c655
 
 
 
 
 
 
 
 
 
 
 
 
 
64a928c
 
569c655
64a928c
 
7762e93
64a928c
569c655
 
fbb9bcf
569c655
 
 
fbb9bcf
569c655
 
 
 
fbb9bcf
 
 
fdced54
fbb9bcf
fdced54
 
 
fbb9bcf
 
fdced54
 
fbb9bcf
fdced54
 
 
 
 
569c655
fdced54
 
fbb9bcf
fdced54
fbb9bcf
fdced54
 
 
 
 
 
fbb9bcf
 
 
fdced54
fbb9bcf
 
fdced54
fbb9bcf
 
 
569c655
27fa4d4
cf43d11
b1235b7
84178af
b1235b7
569c655
27fa4d4
b1235b7
27fa4d4
 
 
 
 
b1235b7
27fa4d4
c97c249
 
 
 
b1235b7
47c282a
cf43d11
b1235b7
 
04b7f67
b1235b7
 
 
 
47c282a
f00497a
 
b1235b7
f00497a
b1235b7
 
f00497a
b1235b7
 
f00497a
c80a2f9
b1235b7
 
 
cf43d11
b1235b7
 
569c655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbb9bcf
fdced54
fbb9bcf
 
569c655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbb9bcf
 
569c655
fbb9bcf
 
569c655
 
fbb9bcf
569c655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4d232
 
 
 
 
 
 
 
 
 
 
569c655
9f4d232
569c655
9f4d232
569c655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4d232
569c655
 
 
 
 
 
 
 
 
9f4d232
569c655
9f4d232
 
569c655
9f4d232
569c655
9f4d232
 
bbd289f
9f4d232
 
 
41afb82
fcc39f7
 
569c655
9f4d232
569c655
 
 
9f4d232
7733e8f
 
 
 
 
 
 
 
 
 
 
 
 
0800c74
9bb8df6
 
 
7733e8f
 
 
 
fdced54
fb65e83
7733e8f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
from fastapi import FastAPI, HTTPException, Form, Request
from fastapi.responses import JSONResponse
import torch
import pandas as pd
import logging
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import degree
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn import preprocessing as pp
import json
from pydantic import BaseModel
from typing import List, Optional
import gradio as gr
import os
from datasets import load_dataset
from scheduler import get_latest_model

cache_base = "/app/cache"
os.makedirs(f"{cache_base}/huggingface", exist_ok=True)
os.makedirs(f"{cache_base}/transformers", exist_ok=True)
os.makedirs(f"{cache_base}/datasets", exist_ok=True)

# Set all possible Hugging Face cache environment variables
os.environ['HF_HOME'] = f"{cache_base}/huggingface"
os.environ['TRANSFORMERS_CACHE'] = f"{cache_base}/transformers"
os.environ['HF_DATASETS_CACHE'] = f"{cache_base}/datasets"
os.environ['HUGGINGFACE_HUB_CACHE'] = f"{cache_base}/huggingface"
os.environ['HF_HUB_CACHE'] = f"{cache_base}/huggingface"
# Initialize FastAPI and logging
app = FastAPI()
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)



product_gender_mapping = {
    "Dental Care Kits": "Unisex",
    "Lamb Meat": "Unisex",
    "Whole Chicken": "Unisex",
    "Hyaluronic Acid": "Female",
    "Whitening Toothpaste": "Unisex",
    "Pure Sesame Oil": "Unisex",
    "Modern Literature": "Unisex",
    "Organic Sesame Oil": "Unisex",
    "Premium Olive Oil": "Unisex",
    "Historical Fiction": "Unisex",
    "Home Decorations": "Unisex",
    "Minced Meat": "Unisex",
    "Fresh Milk": "Unisex",
    "Skin Health Products": "Female",
    "Kitchen Towels": "Unisex",
    "Mineral Water": "Unisex",
    "Frozen Chicken Drumsticks": "Unisex",
    "Premium Bedding": "Unisex",
    "Pepsi Soft Drink": "Unisex",
    "Organic Milk": "Unisex",
    "Refined Olive Oil": "Unisex",
    "Tomato Paste": "Unisex",
    "Burger Sauce": "Unisex",
    "Xbox Series X": "Male",
    "Smart LED TV": "Unisex",
    "MacBook Pro 16-inch": "Unisex",
    "iPhone15": "Unisex",
    "Innovative Home Appliances": "Unisex",
    "Windbreaker Jacket": "Male",
    "Natural Shampoo": "Female",
    "Classic Fiction": "Unisex",
    "Eyeliner": "Female",
    "Creamy Mayonnaise": "Unisex",
    "Coca-Cola Soft Drink": "Unisex",
    "Training Shorts": "Male",
    "Pavilion Laptop": "Unisex",
    "Hyaluronic Acid": "Female",
    "Inspiron Laptop": "Unisex",
    "Snack Bars": "Unisex",
    "Tomato Ketchup": "Unisex",
    "Blender": "Unisex",
    "Energy-Efficient Air Conditioner": "Unisex",
    "Conditionar": "Female",
    "Advanced Washing Machine": "Unisex",
    "Hand Cream": "Female",
    "Hair Cream": "Female",
    "Mascara": "Female",
    "Bluetooth Audio System": "Unisex",
    "Sports Shoes": "Unisex",
    "PlayStation Console": "Male",
    "Chili Sauce": "Unisex",
    "Smart Refrigerator": "Unisex",
    "Bravia Television": "Unisex",
    "Formal Shirt": "Male",
    "ThinkPad Laptop": "Unisex",
    "Blended Sunflower Oil": "Unisex",
    "iPhone14": "Unisex",
    "Split Air Conditioner": "Unisex",
    "MacBook Pro 13-inch": "Unisex",
    "Athletic T-shirt": "Male",
    "iPad": "Unisex",
    "Galaxy Tablet": "Unisex",
    "Popular Non-Fiction": "Unisex",
    "High-Capacity Washing Machine": "Unisex",
    "iPhone13": "Unisex",
    "Hair Repair Shampoo": "Female",
    "Microwave Oven": "Unisex",
    "Eyeliner": "Female",
    "Consumer Electronics": "Unisex",
    "Durable Home Appliances": "Unisex",
    "Multi-Function Home Appliances": "Unisex",
    "Hydrating Skincare": "Female",
    "MacBook Air": "Unisex",
    "Fruit Juice": "Unisex",
    "Healthy Juice": "Unisex",
    "Evening Dress": "Female",
    "Body Care Essentials": "Female",
    "Mascara": "Female",
    "Frozen Chicken": "Unisex",
    "Hair Serum": "Female",
    "Ground Meat": "Unisex",
    "Eyeliner": "Female",
    "Workout T-shirt": "Male",
    "Living Room Furniture": "Unisex",
    "Milk Chocolate": "Unisex",
    "Shampoo": "Female",
    "Frozen Chicken Wings": "Unisex",
    "Beef Cuts": "Unisex",
    "Instant Coffee": "Unisex",
    "Home Decorations": "Unisex",
    "Power Tools": "Male",
    "Coffee Maker": "Unisex",
    "Modular Furniture": "Unisex",
    "Smart TV": "Unisex",
    "Sunflower Cooking Oil": "Unisex",
    "Running Shoes": "Unisex",
    "Gentle Body Care": "Female",
    "Mascara": "Female",
    "Bathroom Accessories": "Unisex",
    "Hair Cream": "Female",
    "Comfort Bedding": "Unisex",
    "Thriller Novel": "Unisex",
    "Track Jacket": "Male",
    "MacBook Pro 14-inch": "Unisex",
    "LED Lighting": "Unisex",
    "Galaxy Smartphone": "Unisex",
    "Contemporary Literature": "Unisex",
    "Bathroom Essentials": "Unisex",
    "Natural Juice": "Unisex",
    "Smart Watch": "Unisex",
    "Conditionar": "Female",
    "Shampoo": "Female",
    "Casual Jacket": "Male",
    "iPhone16": "Unisex",
    "iPhone11": "Unisex",
}


    
# Set device to GPU if available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
# # Load and preprocess data
# df_all = pd.read_csv("transactions.csv")
# Set a writable cache directory
os.environ["HF_HOME"] = "/tmp/hf_cache"  # Use /tmp, which is writable in Spaces
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
user_encoder = pp.LabelEncoder()
item_encoder = pp.LabelEncoder()
# Load dataset with custom cache directory
dataset_all = load_dataset("FarahMohsenSamy1/Transactions", cache_dir=os.environ["HF_HOME"])
df = dataset_all['train'].to_pandas()  # Convert to pandas DataFrame
df["user_id_idx"] = user_encoder.fit_transform(df["Customer_ID"])
user_encoder = pp.LabelEncoder()
item_encoder = pp.LabelEncoder()
df["user_id_idx"] = user_encoder.fit_transform(df["Customer_ID"])
df["item_id_idx"] = item_encoder.fit_transform(df["Item_ID"])
# df['Timestamp'] = pd.to_datetime(df['Timestamp'])
# df['Timestamp_numeric'] = df['Timestamp'].astype('int64') // 10**9  # Seconds since epoch
# df["scaled_timestamp"] = MinMaxScaler().fit_transform(df[["Timestamp_numeric"]])
latent_dim = 64
n_layers = 3
n_users = df["user_id_idx"].nunique()
n_items = df["item_id_idx"].nunique()
COLLAB_WEIGHT = 0.5
CONTENT_WEIGHT = 0.5

# Label encoding and scaling
user_label_encoder = pp.LabelEncoder()
item_label_encoder = pp.LabelEncoder()
date_scaler = MinMaxScaler()


def preprocess_data(df, le_user=None, le_item=None, scaler=None):
    if le_user is not None:
        df["user_id_idx"] = le_user.fit_transform(df["Customer_ID"].values)
    if le_item is not None:
        df["item_id_idx"] = le_item.fit_transform(df["Item_ID"].values)
    df["Timestamp"] = pd.to_datetime(df["Timestamp"], unit='s')

    if scaler is not None:
        # Option 1: scale based on numeric timestamp
        df["Timestamp_numeric"] = df["Timestamp"].astype(np.int64) // 10**9
        df["Date"] = scaler.fit_transform(df[["Timestamp_numeric"]])
    
    return df


preprocessed_df = preprocess_data(
    df, user_label_encoder, item_label_encoder, date_scaler
)

# Prepare edge_index for the graph-based model
u_t = torch.LongTensor(preprocessed_df.user_id_idx.values)
i_t = torch.LongTensor(preprocessed_df.item_id_idx.values) + n_users
edge_index = torch.stack((torch.cat([u_t, i_t]), torch.cat([i_t, u_t]))).to(device)


# Define LightGCNConv model
class LightGCNConv(MessagePassing):
    def __init__(self, **kwargs):
        super().__init__(aggr="add")

    def forward(self, x, edge_index):
        from_, to_ = edge_index
        deg = degree(to_, x.size(0), dtype=x.dtype)
        deg_inv_sqrt = deg.pow(-0.5)
        deg_inv_sqrt[deg_inv_sqrt == float("inf")] = 0
        norm = deg_inv_sqrt[from_] * deg_inv_sqrt[to_]
        return self.propagate(edge_index, x=x, norm=norm)

    def message(self, x_j, norm):
        return norm.view(-1, 1) * x_j


class RecSysGNN(nn.Module):
    def __init__(self, latent_dim, num_layers, num_users, num_items):
        super(RecSysGNN, self).__init__()
        self.embedding = nn.Embedding(num_users + num_items, latent_dim)
        self.convs = nn.ModuleList(LightGCNConv() for _ in range(num_layers))
        self.init_parameters()

    def init_parameters(self):
        nn.init.normal_(self.embedding.weight, std=0.1)

    def forward(self, edge_index):
        emb0 = self.embedding.weight
        embs = [emb0]
        emb = emb0
        for conv in self.convs:
            emb = conv(x=emb, edge_index=edge_index)
            embs.append(emb)

        out = torch.mean(torch.stack(embs, dim=0), dim=0)
        return emb0, out


# model_path = get_latest_model()


MODEL_PATH_FILE = "/app/models/latest_model.txt"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def get_model_path():
    """Reads the latest model path from the file."""
    if os.path.exists(MODEL_PATH_FILE):
        with open(MODEL_PATH_FILE, "r") as f:
            return f.read().strip()
    return None

# Retrieve the model path from the file
model_path = get_model_path()
if not model_path:
    raise FileNotFoundError("Model path file is missing or empty. Please train the model first.")
if not os.path.exists(model_path):
    raise FileNotFoundError(f"Model file not found at '{model_path}'. Please train the model first.")


print(f" Loading model from: {model_path}")

# Initialize the model
model = RecSysGNN(
    latent_dim=64, num_layers=3, num_users=n_users, num_items=n_items
).to(device)

# Load the state dictionary
state_dict = torch.load(model_path, map_location=device)
model_state = model.state_dict()

# Filter the state_dict to only load matching parameters
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state and v.size() == model_state[k].size()}

# Update the model state dictionary with the filtered parameters
model_state.update(filtered_state_dict)

# Load the model state into the model
model.load_state_dict(model_state)

# Set the model to evaluation mode
model.eval()

print(f" Model loaded successfully from: {model_path}")


# Create user-product rating matrix
user_product_rating = preprocessed_df.pivot_table(
    index="user_id_idx", columns="Item_ID", values="rating"
)
user_product_rating.fillna(0, inplace=True)

# Cosine similarity for content-based filtering
product_features = (
    preprocessed_df[["Item_ID", "Product_Name", "Product_Category", "Product_Brand", "Price"]]
    .drop_duplicates()
    .set_index("Item_ID")
)
product_features_encoded = pd.get_dummies(product_features)

cosine_sim_df = pd.DataFrame(
    cosine_similarity(product_features_encoded),
    index=product_features_encoded.index,
    columns=product_features_encoded.index,
)

# Item ID mapping
item_id_mapping = dict(zip(preprocessed_df["item_id_idx"], preprocessed_df["Item_ID"]))
product_name_mapping = dict(
    zip(preprocessed_df["Item_ID"], preprocessed_df["Product_Name"])
)
user_gender_mapping = dict(
    zip(preprocessed_df["user_id_idx"], preprocessed_df["Customer_Gender"])
)
cosine_sim_df.fillna(0, inplace=True)

# Set up logging configuration
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

def content_based_filtering(user_id, top_k=20, time_weight=0.5):
    try:
        logging.info(f"Started content-based filtering for user {user_id}")

        user_transactions = df[df["user_id_idx"] == user_id].sort_values(by="Timestamp", ascending=False)
        content_scores = []

        if user_id not in user_product_rating.index:
            logging.warning(f"User {user_id} not found in rating matrix.")
            return []

        user_ratings = user_product_rating.loc[user_id]
        for _, transaction in user_transactions.iterrows():
            product = transaction["Item_ID"]
            timestamp = transaction["Timestamp"]
            time_factor = 1 / (1 + np.exp(-time_weight * timestamp))

            if product in cosine_sim_df.index:
                similar_products = cosine_sim_df.loc[product].nlargest(top_k)

                for similar_product, score in similar_products.items():
                    weighted_score = (score * user_ratings.get(product, 0)) * time_factor
                    content_scores.append({
                        "item_id": similar_product,
                        "score": weighted_score
                    })

        return sorted(content_scores, key=lambda x: x["score"], reverse=True)[:top_k]

    except Exception as e:
        logging.error(f"Error in content-based filtering for user {user_id}: {e}")
        return []

# Define the class to receive the new user's preferences
class NewUserPreferences(BaseModel):
    user_id: int
    liked_categories: list

# Find the most similar user based on liked categories
def get_most_similar_user_by_categories(liked_categories):
    if not liked_categories:  # Ensure it's a valid list
        return None

    # Find users who bought products from the same categories
    similar_users = preprocessed_df[
        preprocessed_df["Product_Category"].isin(liked_categories)
    ]["user_id_idx"].value_counts()

    logging.info(f"Most Similar Users: {similar_users}")

    if not similar_users.empty:
        return int(similar_users.idxmax())  # Most frequent user
    return None

# Recommendation Function
def recommend(customer_id: str, top_k: int = 20, liked_categories: str = ""):
    # Convert customer_id to user_id_idx
    user_id = user_label_encoder.transform([customer_id])[0] if customer_id in user_label_encoder.classes_ else None
    
    # Handle invalid customer_id
    if user_id is None:
        if not liked_categories:
            return json.dumps({"error": "Customer ID not found. New users must provide liked categories"}, indent=2)
        
        # Handle cold-start scenario for new users (new customer_id not in the dataset)
        most_similar_user = get_most_similar_user_by_categories(liked_categories.split(','))
        if most_similar_user is None:
            logging.warning(f"No similar users found for liked categories: {liked_categories.split(',')}")
            return json.dumps([], indent=2)  # Return an empty list instead of hanging
        
        # Use the most similar user for recommendations
        user_id = most_similar_user

    # Collaborative Filtering
    logging.info("Starting collaborative filtering")
    with torch.no_grad():
        _, out = model(edge_index)
        user_emb, item_emb = torch.split(out, (n_users, n_items))
        user_embedding = user_emb[user_id]
        collab_scores = torch.matmul(user_embedding, item_emb.T)
        collab_top_k_indices = torch.topk(collab_scores, k=top_k).indices.tolist()

    collab_recommendations = [
        {
            "item_id": int(item_id_mapping[idx]),
            "product_name": product_name_mapping.get(idx, "Unknown"),
            "score": float(collab_scores[idx])
        }
        for idx in collab_top_k_indices if idx in item_id_mapping
    ]

    # Content-Based Filtering
    content_recommendations = content_based_filtering(user_id, top_k)

    # Hybrid Recommendation (Merging Scores)
    hybrid_scores = {rec["item_id"]: rec["score"] for rec in collab_recommendations}
    for rec in content_recommendations:
        if rec["item_id"] in hybrid_scores:
            hybrid_scores[rec["item_id"]] += rec["score"]  # Merging scores
        else:
            hybrid_scores[rec["item_id"]] = rec["score"]

    # Sort recommendations based on hybrid scores
    hybrid_recommendations = sorted(
        [{"item_id": item_id,"product_name": product_name_mapping.get(item_id, "Unknown"), "score": score} for item_id, score in hybrid_scores.items()],
        key=lambda x: x["score"],
        reverse=True
    )[:top_k]




    # Return top-k hybrid recommendations
    return json.dumps(hybrid_recommendations, indent=2)



# import gradio as gr

# iface = gr.Interface(
#     fn=recommend,
#     inputs=[
#         gr.Textbox(label="User ID"),
#         gr.Number(label="Top K", value=20),
#         gr.Textbox(label="Liked Categories (comma-separated)")
#     ],
#     outputs=gr.JSON(label="Recommendations"),  # JSON output
#     title="AI-Powered Product Recommendation System",
#     description="Enter a user ID and get personalized product recommendations based on collaborative & content filtering."
# )




@app.get("/recommend/")
def get_recommendations(user_id: str, top_k: int = 20, liked_categories: str = ""):
    result = recommend(user_id, top_k, liked_categories)
    return JSONResponse(content=json.loads(result))  

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)
# if __name__ == "__main__":
#     iface.launch(server_name="0.0.0.0", server_port=7860)