File size: 9,956 Bytes
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python3
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Code modified from
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py ;
# https://github.com/facebookresearch/deit/blob/main/models.py
# and https://github.com/facebookresearch/vissl/blob/main/vissl/models/trunks/vision_transformer.py


from functools import partial
from typing import Callable, List, Optional

import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, trunc_normal_


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version,
        # can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim**-0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = (
            qkv[0],
            qkv[1],
            qkv[2],
        )  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class MultiheadAttention(nn.MultiheadAttention):
    def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
        return super().forward(x, x, x, need_weights=False, attn_mask=attn_mask)[0]


class ViTAttention(Attention):
    def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
        assert attn_mask is None
        return super().forward(x)


class BlockWithMasking(nn.Module):
    def __init__(
        self,
        dim: int,
        attn_target: Callable,
        mlp_ratio: int = 4,
        act_layer: Callable = nn.GELU,
        norm_layer: Callable = nn.LayerNorm,
        ffn_dropout_rate: float = 0.0,
        drop_path: float = 0.0,
        layer_scale_type: Optional[str] = None,
        layer_scale_init_value: float = 1e-4,
    ):
        super().__init__()

        assert not isinstance(
            attn_target, nn.Module
        ), "attn_target should be a Callable. Otherwise attn_target is shared across blocks!"
        self.attn = attn_target()
        if drop_path > 0.0:
            self.drop_path = DropPath(drop_path)
        else:
            self.drop_path = nn.Identity()
        self.norm_1 = norm_layer(dim)
        mlp_hidden_dim = int(mlp_ratio * dim)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=ffn_dropout_rate,
        )
        self.norm_2 = norm_layer(dim)
        self.layer_scale_type = layer_scale_type
        if self.layer_scale_type is not None:
            assert self.layer_scale_type in [
                "per_channel",
                "scalar",
            ], f"Found Layer scale type {self.layer_scale_type}"
            if self.layer_scale_type == "per_channel":
                # one gamma value per channel
                gamma_shape = [1, 1, dim]
            elif self.layer_scale_type == "scalar":
                # single gamma value for all channels
                gamma_shape = [1, 1, 1]
            # two gammas: for each part of the fwd in the encoder
            self.layer_scale_gamma1 = nn.Parameter(
                torch.ones(size=gamma_shape) * layer_scale_init_value,
                requires_grad=True,
            )
            self.layer_scale_gamma2 = nn.Parameter(
                torch.ones(size=gamma_shape) * layer_scale_init_value,
                requires_grad=True,
            )

    def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
        if self.layer_scale_type is None:
            x = x + self.drop_path(self.attn(self.norm_1(x), attn_mask))
            x = x + self.drop_path(self.mlp(self.norm_2(x)))
        else:
            x = (
                x
                + self.drop_path(self.attn(self.norm_1(x), attn_mask))
                # * self.layer_scale_gamma1
            )
            x = x + self.drop_path(self.mlp(self.norm_2(x))) # * self.layer_scale_gamma2
        return x


_LAYER_NORM = partial(nn.LayerNorm, eps=1e-6)


class SimpleTransformer(nn.Module):
    def __init__(
        self,
        attn_target: Callable,
        embed_dim: int,
        num_blocks: int,
        block: Callable = BlockWithMasking,
        pre_transformer_layer: Optional[Callable] = None,
        post_transformer_layer: Optional[Callable] = None,
        drop_path_rate: float = 0.0,
        drop_path_type: str = "progressive",
        norm_layer: Callable = _LAYER_NORM,
        mlp_ratio: int = 4,
        ffn_dropout_rate: float = 0.0,
        layer_scale_type: Optional[str] = None,  # from cait; possible values are None, "per_channel", "scalar"
        layer_scale_init_value: float = 1e-4,  # from cait; float
        weight_init_style: str = "jax",  # possible values jax or pytorch
    ):
        """
        Simple Transformer with the following features
        1. Supports masked attention
        2. Supports DropPath
        3. Supports LayerScale
        4. Supports Dropout in Attention and FFN
        5. Makes few assumptions about the input except that it is a Tensor
        """
        super().__init__()
        self.pre_transformer_layer = pre_transformer_layer
        if drop_path_type == "progressive":
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_blocks)]
        elif drop_path_type == "uniform":
            dpr = [drop_path_rate for i in range(num_blocks)]
        else:
            raise ValueError(f"Unknown drop_path_type: {drop_path_type}")

        self.blocks = nn.Sequential(
            *[
                block(
                    dim=embed_dim,
                    attn_target=attn_target,
                    mlp_ratio=mlp_ratio,
                    ffn_dropout_rate=ffn_dropout_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    layer_scale_type=layer_scale_type,
                    layer_scale_init_value=layer_scale_init_value,
                )
                for i in range(num_blocks)
            ]
        )
        self.post_transformer_layer = post_transformer_layer
        self.weight_init_style = weight_init_style
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            if self.weight_init_style == "jax":
                # Based on MAE and official Jax ViT implementation
                torch.nn.init.xavier_uniform_(m.weight)
            elif self.weight_init_style == "pytorch":
                # PyTorch ViT uses trunc_normal_
                trunc_normal_(m.weight, std=0.02)

            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.LayerNorm)):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(
        self,
        tokens: torch.Tensor,
        attn_mask: torch.Tensor = None,
        use_checkpoint: bool = False,
        checkpoint_every_n: int = 1,
        checkpoint_blk_ids: Optional[List[int]] = None,
        # return_multi_layer_outputs = False,
        out_layers = []
    ):

        """
        Inputs
        - tokens: data of shape N x L x D (or L x N x D depending on the attention implementation)
        - attn: mask of shape L x L

        Output
        - x: data of shape N x L x D (or L x N x D depending on the attention implementation)
        """
        out_tokens = []

        if self.pre_transformer_layer:
            tokens = self.pre_transformer_layer(tokens)
        if use_checkpoint and checkpoint_blk_ids is None:
            checkpoint_blk_ids = [
                blk_id
                for blk_id in range(len(self.blocks))
                if blk_id % checkpoint_every_n == 0
            ]
        if checkpoint_blk_ids:
            checkpoint_blk_ids = set(checkpoint_blk_ids)
        for blk_id, blk in enumerate(self.blocks):
            if use_checkpoint and blk_id in checkpoint_blk_ids:
                tokens = checkpoint.checkpoint(
                    blk, tokens, attn_mask, use_reentrant=False
                )
            else:
                tokens = blk(tokens, attn_mask=attn_mask)
            if blk_id in out_layers:
                out_tokens.append(tokens)
        if self.post_transformer_layer:
            tokens = self.post_transformer_layer(tokens)
        return tokens, out_tokens