File size: 3,701 Bytes
2000056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import os
import time
from os import path

cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

import gradio as gr
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel

from scheduling_tcd import TCDScheduler

torch.backends.cuda.matmul.allow_tf32 = True

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name

    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")

    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, safety_checker=None)
pipe.to(device="cuda", dtype=torch.float16)
pipe.load_lora_weights("ByteDance/Hyper-SD", weight_name="Hyper-SD15-1step-lora.safetensors", adapter_name="default")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config, timestep_spacing ="trailing")

with gr.Blocks() as demo:
    with gr.Column():
        with gr.Row():
            with gr.Column():
                num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
                steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
                eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True)
                controlnet_scale = gr.Number(label="ControlNet Conditioning Scale", value=1.0, interactive=True)
                prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
                seed = gr.Number(label="Seed", value=3413, interactive=True)
                scribble = gr.Image(source="canvas", tool="color-sketch", shape=(512, 512), height=768, width=768, type="pil")
                btn = gr.Button(value="run")
            with gr.Column():
                output = gr.Gallery(height=768)

            def process_image(steps, prompt, controlnet_scale, eta, seed, scribble, num_images):
                global pipe
                with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16), timer("inference"):
                    return pipe(
                        prompt=[prompt]*num_images,
                        image=[scribble]*num_images,
                        generator=torch.Generator().manual_seed(int(seed)),
                        num_inference_steps=steps,
                        guidance_scale=0.,
                        eta=eta,
                        controlnet_conditioning_scale=controlnet_scale
                    ).images

            reactive_controls = [steps, prompt, controlnet_scale, eta, seed, scribble, num_images]

            for control in reactive_controls:
                control.change(fn=process_image, inputs=reactive_controls, outputs=[output])

            btn.click(process_image, inputs=reactive_controls, outputs=[output])

if __name__ == "__main__":
    # parser = argparse.ArgumentParser()
    # parser.add_argument("--port", default=7891, type=int)
    # args = parser.parse_args()
    # demo.launch(server_name="0.0.0.0", server_port=args.port)
    demo.launch()