File size: 5,126 Bytes
fdd2607
ad8a314
8377ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317d585
8377ba5
 
 
 
 
 
 
 
ea92c48
c0c2682
ea92c48
 
 
8377ba5
 
 
e702117
8377ba5
ea92c48
 
 
 
8377ba5
e702117
8377ba5
c79c478
c0c2682
 
 
 
 
 
 
c79c478
 
0b103dc
c0c2682
ad8a314
8377ba5
26c067a
e702117
0b103dc
ea92c48
c0c2682
ea92c48
c0c2682
ea92c48
8377ba5
ea92c48
ad8a314
8377ba5
ea92c48
 
 
8377ba5
 
c0c2682
ea92c48
8377ba5
ea92c48
 
 
 
ad8a314
 
ea92c48
 
 
 
 
 
8377ba5
ea92c48
 
 
 
 
 
8377ba5
ea92c48
0b103dc
 
ea92c48
 
 
 
8377ba5
 
 
 
 
e702117
8377ba5
e1973f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()

# Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues)

# Install required libraries
# Install required libraries (Run this separately in a terminal or notebook cell)
# !pip install transformers datasets peft accelerate bitsandbytes torch torchvision torchaudio gradio -q

from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig, get_peft_model
import torch

# Authenticate Hugging Face
from huggingface_hub import notebook_login
notebook_login()

# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Load the OpenWebText dataset using streaming (No download required)

# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
    {"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
    {"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
    {"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"},
    {"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."},
    {"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"},
    {"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."},
    {"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."}
]

# Convert custom dataset to Hugging Face Dataset
dataset_custom = load_dataset("json", data_files={"train": custom_data})

# Merge with OpenWebText dataset
dataset = load_dataset("Skylion007/openwebtext", split="train[:50%]")  # Load 5% to avoid streaming issues

# Tokenization function
def tokenize_function(examples):
    return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
    r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
    target_modules=["c_attn", "c_proj"]  # Apply LoRA to attention layers
)

model = get_peft_model(model, lora_config)

# Enable gradient checkpointing to reduce memory usage
model.gradient_checkpointing_enable()

# Training arguments
training_args = TrainingArguments(
    output_dir="gpt2_finetuned",
    auto_find_batch_size=True,
    gradient_accumulation_steps=4,
    learning_rate=5e-5,
    num_train_epochs=3,
    save_strategy="epoch",
    logging_dir="logs",
    bf16=True,
    push_to_hub=True
)

# Trainer setup
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets
)

# Start fine-tuning
trainer.train()

# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()

# Deploy as Gradio Interface
def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=100)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch(share=True)