Spaces:
Runtime error
Runtime error
File size: 25,861 Bytes
ffead1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import tempfile
import unittest
from typing import Dict, List, Tuple
import numpy as np
import torch
import diffusers
from diffusers import (
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
IPNDMScheduler,
LMSDiscreteScheduler,
VQDiffusionScheduler,
logging,
)
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import CaptureLogger
torch.backends.cuda.matmul.allow_tf32 = False
class SchedulerObject(SchedulerMixin, ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
):
pass
class SchedulerObject2(SchedulerMixin, ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
f=[1, 3],
):
pass
class SchedulerObject3(SchedulerMixin, ConfigMixin):
config_name = "config.json"
@register_to_config
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
f=[1, 3],
):
pass
class SchedulerBaseTests(unittest.TestCase):
def test_save_load_from_different_config(self):
obj = SchedulerObject()
# mock add obj class to `diffusers`
setattr(diffusers, "SchedulerObject", SchedulerObject)
logger = logging.get_logger("diffusers.configuration_utils")
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
with CaptureLogger(logger) as cap_logger_1:
config = SchedulerObject2.load_config(tmpdirname)
new_obj_1 = SchedulerObject2.from_config(config)
# now save a config parameter that is not expected
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
data = json.load(f)
data["unexpected"] = True
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
json.dump(data, f)
with CaptureLogger(logger) as cap_logger_2:
config = SchedulerObject.load_config(tmpdirname)
new_obj_2 = SchedulerObject.from_config(config)
with CaptureLogger(logger) as cap_logger_3:
config = SchedulerObject2.load_config(tmpdirname)
new_obj_3 = SchedulerObject2.from_config(config)
assert new_obj_1.__class__ == SchedulerObject2
assert new_obj_2.__class__ == SchedulerObject
assert new_obj_3.__class__ == SchedulerObject2
assert cap_logger_1.out == ""
assert (
cap_logger_2.out
== "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
" will"
" be ignored. Please verify your config.json configuration file.\n"
)
assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out
def test_save_load_compatible_schedulers(self):
SchedulerObject2._compatibles = ["SchedulerObject"]
SchedulerObject._compatibles = ["SchedulerObject2"]
obj = SchedulerObject()
# mock add obj class to `diffusers`
setattr(diffusers, "SchedulerObject", SchedulerObject)
setattr(diffusers, "SchedulerObject2", SchedulerObject2)
logger = logging.get_logger("diffusers.configuration_utils")
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
# now save a config parameter that is expected by another class, but not origin class
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
data = json.load(f)
data["f"] = [0, 0]
data["unexpected"] = True
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
json.dump(data, f)
with CaptureLogger(logger) as cap_logger:
config = SchedulerObject.load_config(tmpdirname)
new_obj = SchedulerObject.from_config(config)
assert new_obj.__class__ == SchedulerObject
assert (
cap_logger.out
== "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
" will"
" be ignored. Please verify your config.json configuration file.\n"
)
def test_save_load_from_different_config_comp_schedulers(self):
SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"]
SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"]
SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"]
obj = SchedulerObject()
# mock add obj class to `diffusers`
setattr(diffusers, "SchedulerObject", SchedulerObject)
setattr(diffusers, "SchedulerObject2", SchedulerObject2)
setattr(diffusers, "SchedulerObject3", SchedulerObject3)
logger = logging.get_logger("diffusers.configuration_utils")
logger.setLevel(diffusers.logging.INFO)
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
with CaptureLogger(logger) as cap_logger_1:
config = SchedulerObject.load_config(tmpdirname)
new_obj_1 = SchedulerObject.from_config(config)
with CaptureLogger(logger) as cap_logger_2:
config = SchedulerObject2.load_config(tmpdirname)
new_obj_2 = SchedulerObject2.from_config(config)
with CaptureLogger(logger) as cap_logger_3:
config = SchedulerObject3.load_config(tmpdirname)
new_obj_3 = SchedulerObject3.from_config(config)
assert new_obj_1.__class__ == SchedulerObject
assert new_obj_2.__class__ == SchedulerObject2
assert new_obj_3.__class__ == SchedulerObject3
assert cap_logger_1.out == ""
assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n"
assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n"
class SchedulerCommonTest(unittest.TestCase):
scheduler_classes = ()
forward_default_kwargs = ()
@property
def dummy_sample(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
sample = torch.rand((batch_size, num_channels, height, width))
return sample
@property
def dummy_sample_deter(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
num_elems = batch_size * num_channels * height * width
sample = torch.arange(num_elems)
sample = sample.reshape(num_channels, height, width, batch_size)
sample = sample / num_elems
sample = sample.permute(3, 0, 1, 2)
return sample
def get_scheduler_config(self):
raise NotImplementedError
def dummy_model(self):
def model(sample, t, *args):
return sample * t / (t + 1)
return model
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
# TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
time_step = float(time_step)
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, time_step)
else:
sample = self.dummy_sample
residual = 0.1 * sample
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# Make sure `scale_model_input` is invoked to prevent a warning
if scheduler_class != VQDiffusionScheduler:
_ = scheduler.scale_model_input(sample, 0)
_ = new_scheduler.scale_model_input(sample, 0)
# Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
time_step = float(time_step)
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, time_step)
else:
sample = self.dummy_sample
residual = 0.1 * sample
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_save_pretrained(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
timestep = 1
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
timestep = float(timestep)
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, timestep)
else:
sample = self.dummy_sample
residual = 0.1 * sample
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_compatibles(self):
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
assert all(c is not None for c in scheduler.compatibles)
for comp_scheduler_cls in scheduler.compatibles:
comp_scheduler = comp_scheduler_cls.from_config(scheduler.config)
assert comp_scheduler is not None
new_scheduler = scheduler_class.from_config(comp_scheduler.config)
new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config}
scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config}
# make sure that configs are essentially identical
assert new_scheduler_config == dict(scheduler.config)
# make sure that only differences are for configs that are not in init
init_keys = inspect.signature(scheduler_class.__init__).parameters.keys()
assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set()
def test_from_pretrained(self):
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_pretrained(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
assert scheduler.config == new_scheduler.config
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
timestep_0 = 0
timestep_1 = 1
for scheduler_class in self.scheduler_classes:
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
timestep_0 = float(timestep_0)
timestep_1 = float(timestep_1)
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, timestep_0)
else:
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample
output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_scheduler_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", 50)
timestep = 0
if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler:
timestep = 1
for scheduler_class in self.scheduler_classes:
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
timestep = float(timestep)
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class == VQDiffusionScheduler:
num_vec_classes = scheduler_config["num_vec_classes"]
sample = self.dummy_sample(num_vec_classes)
model = self.dummy_model(num_vec_classes)
residual = model(sample, timestep)
else:
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple, outputs_dict)
def test_scheduler_public_api(self):
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
if scheduler_class != VQDiffusionScheduler:
self.assertTrue(
hasattr(scheduler, "init_noise_sigma"),
f"{scheduler_class} does not implement a required attribute `init_noise_sigma`",
)
self.assertTrue(
hasattr(scheduler, "scale_model_input"),
(
f"{scheduler_class} does not implement a required class method `scale_model_input(sample,"
" timestep)`"
),
)
self.assertTrue(
hasattr(scheduler, "step"),
f"{scheduler_class} does not implement a required class method `step(...)`",
)
if scheduler_class != VQDiffusionScheduler:
sample = self.dummy_sample
scaled_sample = scheduler.scale_model_input(sample, 0.0)
self.assertEqual(sample.shape, scaled_sample.shape)
def test_add_noise_device(self):
for scheduler_class in self.scheduler_classes:
if scheduler_class == IPNDMScheduler:
continue
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(100)
sample = self.dummy_sample.to(torch_device)
scaled_sample = scheduler.scale_model_input(sample, 0.0)
self.assertEqual(sample.shape, scaled_sample.shape)
noise = torch.randn_like(scaled_sample).to(torch_device)
t = scheduler.timesteps[5][None]
noised = scheduler.add_noise(scaled_sample, noise, t)
self.assertEqual(noised.shape, scaled_sample.shape)
def test_deprecated_kwargs(self):
for scheduler_class in self.scheduler_classes:
has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters
has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0
if has_kwarg_in_model_class and not has_deprecated_kwarg:
raise ValueError(
f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated"
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if"
" there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
" [<deprecated_argument>]`"
)
if not has_kwarg_in_model_class and has_deprecated_kwarg:
raise ValueError(
f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated"
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`"
f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the"
" deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`"
)
def test_trained_betas(self):
for scheduler_class in self.scheduler_classes:
if scheduler_class == VQDiffusionScheduler:
continue
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.1, 0.3]))
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_pretrained(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
assert scheduler.betas.tolist() == new_scheduler.betas.tolist()
|