File size: 8,202 Bytes
5325fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Adapted from MIT code under the original license
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
import typing as tp

import torch
from torch import nn
from torch.nn import functional as F


# TODO: Replace with torchaudio.STFT?
def _stft(x: torch.Tensor, fft_size: int, hop_length: int, win_length: int,
          window: tp.Optional[torch.Tensor], normalized: bool) -> torch.Tensor:
    """Perform STFT and convert to magnitude spectrogram.

    Args:
        x: Input signal tensor (B, C, T).
        fft_size (int): FFT size.
        hop_length (int): Hop size.
        win_length (int): Window length.
        window (torch.Tensor or None): Window function type.
        normalized (bool): Whether to normalize the STFT or not.

    Returns:
        torch.Tensor: Magnitude spectrogram (B, C, #frames, fft_size // 2 + 1).
    """
    B, C, T = x.shape
    x_stft = torch.stft(
        x.view(-1, T), fft_size, hop_length, win_length, window,
        normalized=normalized, return_complex=True,
    )
    x_stft = x_stft.view(B, C, *x_stft.shape[1:])
    real = x_stft.real
    imag = x_stft.imag

    # NOTE(kan-bayashi): clamp is needed to avoid nan or inf
    return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1)


class SpectralConvergenceLoss(nn.Module):
    """Spectral convergence loss.
    """
    def __init__(self, epsilon: float = torch.finfo(torch.float32).eps):
        super().__init__()
        self.epsilon = epsilon

    def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor):
        """Calculate forward propagation.

        Args:
            x_mag: Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
            y_mag: Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
        Returns:
            torch.Tensor: Spectral convergence loss value.
        """
        return torch.norm(y_mag - x_mag, p="fro") / (torch.norm(y_mag, p="fro") + self.epsilon)


class LogSTFTMagnitudeLoss(nn.Module):
    """Log STFT magnitude loss.

    Args:
        epsilon (float): Epsilon value for numerical stability.
    """
    def __init__(self, epsilon: float = torch.finfo(torch.float32).eps):
        super().__init__()
        self.epsilon = epsilon

    def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor):
        """Calculate forward propagation.

        Args:
            x_mag (torch.Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
            y_mag (torch.Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
        Returns:
            torch.Tensor: Log STFT magnitude loss value.
        """
        return F.l1_loss(torch.log(self.epsilon + y_mag), torch.log(self.epsilon + x_mag))


class STFTLosses(nn.Module):
    """STFT losses.

    Args:
        n_fft (int): Size of FFT.
        hop_length (int): Hop length.
        win_length (int): Window length.
        window (str): Window function type.
        normalized (bool): Whether to use normalized STFT or not.
        epsilon (float): Epsilon for numerical stability.
    """
    def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600,
                 window: str = "hann_window", normalized: bool = False,
                 epsilon: float = torch.finfo(torch.float32).eps):
        super().__init__()
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.normalized = normalized
        self.register_buffer("window", getattr(torch, window)(win_length))
        self.spectral_convergenge_loss = SpectralConvergenceLoss(epsilon)
        self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss(epsilon)

    def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Calculate forward propagation.

        Args:
            x (torch.Tensor): Predicted signal (B, T).
            y (torch.Tensor): Groundtruth signal (B, T).
        Returns:
            torch.Tensor: Spectral convergence loss value.
            torch.Tensor: Log STFT magnitude loss value.
        """
        x_mag = _stft(x, self.n_fft, self.hop_length,
                      self.win_length, self.window, self.normalized)  # type: ignore
        y_mag = _stft(y, self.n_fft, self.hop_length,
                      self.win_length, self.window, self.normalized)  # type: ignore
        sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
        mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)

        return sc_loss, mag_loss


class STFTLoss(nn.Module):
    """Single Resolution STFT loss.

    Args:
        n_fft (int): Nb of FFT.
        hop_length (int): Hop length.
        win_length (int): Window length.
        window (str): Window function type.
        normalized (bool): Whether to use normalized STFT or not.
        epsilon (float): Epsilon for numerical stability.
        factor_sc (float): Coefficient for the spectral loss.
        factor_mag (float): Coefficient for the magnitude loss.
    """
    def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600,
                 window: str = "hann_window", normalized: bool = False,
                 factor_sc: float = 0.1, factor_mag: float = 0.1,
                 epsilon: float = torch.finfo(torch.float32).eps):
        super().__init__()
        self.loss = STFTLosses(n_fft, hop_length, win_length, window, normalized, epsilon)
        self.factor_sc = factor_sc
        self.factor_mag = factor_mag

    def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Calculate forward propagation.

        Args:
            x (torch.Tensor): Predicted signal (B, T).
            y (torch.Tensor): Groundtruth signal (B, T).
        Returns:
            torch.Tensor: Single resolution STFT loss.
        """
        sc_loss, mag_loss = self.loss(x, y)
        return self.factor_sc * sc_loss + self.factor_mag * mag_loss


class MRSTFTLoss(nn.Module):
    """Multi resolution STFT loss.

    Args:
        n_ffts (Sequence[int]): Sequence of FFT sizes.
        hop_lengths (Sequence[int]): Sequence of hop sizes.
        win_lengths (Sequence[int]): Sequence of window lengths.
        window (str): Window function type.
        factor_sc (float): Coefficient for the spectral loss.
        factor_mag (float): Coefficient for the magnitude loss.
        normalized (bool): Whether to use normalized STFT or not.
        epsilon (float): Epsilon for numerical stability.
    """
    def __init__(self, n_ffts: tp.Sequence[int] = [1024, 2048, 512], hop_lengths: tp.Sequence[int] = [120, 240, 50],
                 win_lengths: tp.Sequence[int] = [600, 1200, 240], window: str = "hann_window",
                 factor_sc: float = 0.1, factor_mag: float = 0.1,
                 normalized: bool = False, epsilon: float = torch.finfo(torch.float32).eps):
        super().__init__()
        assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
        self.stft_losses = torch.nn.ModuleList()
        for fs, ss, wl in zip(n_ffts, hop_lengths, win_lengths):
            self.stft_losses += [STFTLosses(fs, ss, wl, window, normalized, epsilon)]
        self.factor_sc = factor_sc
        self.factor_mag = factor_mag

    def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
        """Calculate forward propagation.

        Args:
            x (torch.Tensor): Predicted signal (B, T).
            y (torch.Tensor): Groundtruth signal (B, T).
        Returns:
            torch.Tensor: Multi resolution STFT loss.
        """
        sc_loss = torch.Tensor([0.0])
        mag_loss = torch.Tensor([0.0])
        for f in self.stft_losses:
            sc_l, mag_l = f(x, y)
            sc_loss += sc_l
            mag_loss += mag_l
        sc_loss /= len(self.stft_losses)
        mag_loss /= len(self.stft_losses)

        return self.factor_sc * sc_loss + self.factor_mag * mag_loss