Spaces:
Running
Running
File size: 6,724 Bytes
5325fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Entry point for dora to launch solvers for running training loops.
See more info on how to use dora: https://github.com/facebookresearch/dora
"""
import logging
import multiprocessing
import os
from pathlib import Path
import sys
import typing as tp
from dora import git_save, hydra_main, XP
import flashy
import hydra
import omegaconf
from .environment import AudioCraftEnvironment
from .utils.cluster import get_slurm_parameters
logger = logging.getLogger(__name__)
def resolve_config_dset_paths(cfg):
"""Enable Dora to load manifest from git clone repository."""
# manifest files for the different splits
for key, value in cfg.datasource.items():
if isinstance(value, str):
cfg.datasource[key] = git_save.to_absolute_path(value)
def get_solver(cfg):
from . import solvers
# Convert batch size to batch size for each GPU
assert cfg.dataset.batch_size % flashy.distrib.world_size() == 0
cfg.dataset.batch_size //= flashy.distrib.world_size()
for split in ['train', 'valid', 'evaluate', 'generate']:
if hasattr(cfg.dataset, split) and hasattr(cfg.dataset[split], 'batch_size'):
assert cfg.dataset[split].batch_size % flashy.distrib.world_size() == 0
cfg.dataset[split].batch_size //= flashy.distrib.world_size()
resolve_config_dset_paths(cfg)
solver = solvers.get_solver(cfg)
return solver
def get_solver_from_xp(xp: XP, override_cfg: tp.Optional[tp.Union[dict, omegaconf.DictConfig]] = None,
restore: bool = True, load_best: bool = True,
ignore_state_keys: tp.List[str] = [], disable_fsdp: bool = True):
"""Given a XP, return the Solver object.
Args:
xp (XP): Dora experiment for which to retrieve the solver.
override_cfg (dict or None): If not None, should be a dict used to
override some values in the config of `xp`. This will not impact
the XP signature or folder. The format is different
than the one used in Dora grids, nested keys should actually be nested dicts,
not flattened, e.g. `{'optim': {'batch_size': 32}}`.
restore (bool): If `True` (the default), restore state from the last checkpoint.
load_best (bool): If `True` (the default), load the best state from the checkpoint.
ignore_state_keys (list[str]): List of sources to ignore when loading the state, e.g. `optimizer`.
disable_fsdp (bool): if True, disables FSDP entirely. This will
also automatically skip loading the EMA. For solver specific
state sources, like the optimizer, you might want to
use along `ignore_state_keys=['optimizer']`. Must be used with `load_best=True`.
"""
logger.info(f"Loading solver from XP {xp.sig}. "
f"Overrides used: {xp.argv}")
cfg = xp.cfg
if override_cfg is not None:
cfg = omegaconf.OmegaConf.merge(cfg, omegaconf.DictConfig(override_cfg))
if disable_fsdp and cfg.fsdp.use:
cfg.fsdp.use = False
assert load_best is True
# ignoring some keys that were FSDP sharded like model, ema, and best_state.
# fsdp_best_state will be used in that case. When using a specific solver,
# one is responsible for adding the relevant keys, e.g. 'optimizer'.
# We could make something to automatically register those inside the solver, but that
# seem overkill at this point.
ignore_state_keys = ignore_state_keys + ['model', 'ema', 'best_state']
try:
with xp.enter():
solver = get_solver(cfg)
if restore:
solver.restore(load_best=load_best, ignore_state_keys=ignore_state_keys)
return solver
finally:
hydra.core.global_hydra.GlobalHydra.instance().clear()
def get_solver_from_sig(sig: str, *args, **kwargs):
"""Return Solver object from Dora signature, i.e. to play with it from a notebook.
See `get_solver_from_xp` for more information.
"""
xp = main.get_xp_from_sig(sig)
return get_solver_from_xp(xp, *args, **kwargs)
def init_seed_and_system(cfg):
import numpy as np
import torch
import random
from audiocraft.modules.transformer import set_efficient_attention_backend
multiprocessing.set_start_method(cfg.mp_start_method)
logger.debug('Setting mp start method to %s', cfg.mp_start_method)
random.seed(cfg.seed)
np.random.seed(cfg.seed)
# torch also initialize cuda seed if available
torch.manual_seed(cfg.seed)
torch.set_num_threads(cfg.num_threads)
os.environ['MKL_NUM_THREADS'] = str(cfg.num_threads)
os.environ['OMP_NUM_THREADS'] = str(cfg.num_threads)
logger.debug('Setting num threads to %d', cfg.num_threads)
set_efficient_attention_backend(cfg.efficient_attention_backend)
logger.debug('Setting efficient attention backend to %s', cfg.efficient_attention_backend)
if 'SLURM_JOB_ID' in os.environ:
tmpdir = Path('/scratch/slurm_tmpdir/' + os.environ['SLURM_JOB_ID'])
if tmpdir.exists():
logger.info("Changing tmpdir to %s", tmpdir)
os.environ['TMPDIR'] = str(tmpdir)
@hydra_main(config_path='../config', config_name='config', version_base='1.1')
def main(cfg):
init_seed_and_system(cfg)
# Setup logging both to XP specific folder, and to stderr.
log_name = '%s.log.{rank}' % cfg.execute_only if cfg.execute_only else 'solver.log.{rank}'
flashy.setup_logging(level=str(cfg.logging.level).upper(), log_name=log_name)
# Initialize distributed training, no need to specify anything when using Dora.
flashy.distrib.init()
solver = get_solver(cfg)
if cfg.show:
solver.show()
return
if cfg.execute_only:
assert cfg.execute_inplace or cfg.continue_from is not None, \
"Please explicitly specify the checkpoint to continue from with continue_from=<sig_or_path> " + \
"when running with execute_only or set execute_inplace to True."
solver.restore(replay_metrics=False) # load checkpoint
solver.run_one_stage(cfg.execute_only)
return
return solver.run()
main.dora.dir = AudioCraftEnvironment.get_dora_dir()
main._base_cfg.slurm = get_slurm_parameters(main._base_cfg.slurm)
if main.dora.shared is not None and not os.access(main.dora.shared, os.R_OK):
print("No read permission on dora.shared folder, ignoring it.", file=sys.stderr)
main.dora.shared = None
if __name__ == '__main__':
main()
|