Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 4,832 Bytes
			
			c634a05  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135  | 
								import numpy as np
import torch
from PIL import Image
import os
import io
def pad_reflect(image, pad_size):
    imsize = image.shape
    height, width = imsize[:2]
    new_img = np.zeros([height + pad_size * 2, width + pad_size * 2, imsize[2]]).astype(np.uint8)
    new_img[pad_size:-pad_size, pad_size:-pad_size, :] = image
    new_img[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0)  # top
    new_img[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0)  # bottom
    new_img[:, 0:pad_size, :] = np.flip(new_img[:, pad_size:pad_size * 2, :], axis=1)  # left
    new_img[:, -pad_size:, :] = np.flip(new_img[:, -pad_size * 2:-pad_size, :], axis=1)  # right
    return new_img
def unpad_image(image, pad_size):
    return image[pad_size:-pad_size, pad_size:-pad_size, :]
def process_array(image_array, expand=True):
    """ Process a 3-dimensional array into a scaled, 4 dimensional batch of size 1. """
    image_batch = image_array / 255.0
    if expand:
        image_batch = np.expand_dims(image_batch, axis=0)
    return image_batch
def process_output(output_tensor):
    """ Transforms the 4-dimensional output tensor into a suitable image format. """
    sr_img = output_tensor.clip(0, 1) * 255
    sr_img = np.uint8(sr_img)
    return sr_img
def pad_patch(image_patch, padding_size, channel_last=True):
    """ Pads image_patch with with padding_size edge values. """
    if channel_last:
        return np.pad(
            image_patch,
            ((padding_size, padding_size), (padding_size, padding_size), (0, 0)),
            'edge',
        )
    else:
        return np.pad(
            image_patch,
            ((0, 0), (padding_size, padding_size), (padding_size, padding_size)),
            'edge',
        )
def unpad_patches(image_patches, padding_size):
    return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :]
def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2):
    """ Splits the image into partially overlapping patches.
    The patches overlap by padding_size pixels.
    Pads the image twice:
        - first to have a size multiple of the patch size,
        - then to have equal padding at the borders.
    Args:
        image_array: numpy array of the input image.
        patch_size: size of the patches from the original image (without padding).
        padding_size: size of the overlapping area.
    """
    xmax, ymax, _ = image_array.shape
    x_remainder = xmax % patch_size
    y_remainder = ymax % patch_size
    # modulo here is to avoid extending of patch_size instead of 0
    x_extend = (patch_size - x_remainder) % patch_size
    y_extend = (patch_size - y_remainder) % patch_size
    # make sure the image is divisible into regular patches
    extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), 'edge')
    # add padding around the image to simplify computations
    padded_image = pad_patch(extended_image, padding_size, channel_last=True)
    xmax, ymax, _ = padded_image.shape
    patches = []
    x_lefts = range(padding_size, xmax - padding_size, patch_size)
    y_tops = range(padding_size, ymax - padding_size, patch_size)
    for x in x_lefts:
        for y in y_tops:
            x_left = x - padding_size
            y_top = y - padding_size
            x_right = x + patch_size + padding_size
            y_bottom = y + patch_size + padding_size
            patch = padded_image[x_left:x_right, y_top:y_bottom, :]
            patches.append(patch)
    return np.array(patches), padded_image.shape
def stich_together(patches, padded_image_shape, target_shape, padding_size=4):
    """ Reconstruct the image from overlapping patches.
    After scaling, shapes and padding should be scaled too.
    Args:
        patches: patches obtained with split_image_into_overlapping_patches
        padded_image_shape: shape of the padded image contructed in split_image_into_overlapping_patches
        target_shape: shape of the final image
        padding_size: size of the overlapping area.
    """
    xmax, ymax, _ = padded_image_shape
    patches = unpad_patches(patches, padding_size)
    patch_size = patches.shape[1]
    n_patches_per_row = ymax // patch_size
    complete_image = np.zeros((xmax, ymax, 3))
    row = -1
    col = 0
    for i in range(len(patches)):
        if i % n_patches_per_row == 0:
            row += 1
            col = 0
        complete_image[
        row * patch_size: (row + 1) * patch_size, col * patch_size: (col + 1) * patch_size, :
        ] = patches[i]
        col += 1
    return complete_image[0: target_shape[0], 0: target_shape[1], :] |