File size: 7,295 Bytes
d3091ae
 
 
 
 
 
 
792b20f
b46297c
d3091ae
 
53bdc9e
d3091ae
 
 
 
5adf87d
a07ca9d
5cc09f2
5adf87d
53bdc9e
509de15
 
1697e2a
 
 
509de15
 
 
 
53bdc9e
a07ca9d
d3091ae
4b4913f
5cc09f2
 
4c6de9b
d3091ae
 
 
 
 
4b4913f
d3091ae
4b4913f
d3091ae
 
792b20f
d3091ae
 
 
 
 
 
 
 
 
 
 
4c6de9b
 
 
 
d3091ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690f172
d3091ae
 
 
 
 
 
 
 
 
690f172
d3091ae
 
 
690f172
 
 
 
 
 
 
 
d3091ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792b20f
d3091ae
 
 
 
 
 
 
 
792b20f
d3091ae
792b20f
8029cd1
 
d3091ae
5adf87d
d3091ae
 
 
8029cd1
792b20f
d3091ae
5adf87d
792b20f
070c1ad
8395168
070c1ad
 
8395168
d3091ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc09f2
792b20f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import time
from pathlib import Path
from loguru import logger
from datetime import datetime
import gradio as gr
import random
import spaces
import torch

from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.utils.preprocess_text_encoder_tokenizer_utils import preprocess_text_encoder_tokenizer
from hyvideo.config import parse_args
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT

from huggingface_hub import snapshot_download

if torch.cuda.device_count() > 0:
    snapshot_download(repo_id="tencent/HunyuanVideo", repo_type="model", local_dir="ckpts", force_download=True)
    snapshot_download(repo_id="xtuner/llava-llama-3-8b-v1_1-transformers", repo_type="model", local_dir="ckpts/llava-llama-3-8b-v1_1-transformers", force_download=True)

    class Args:
        def __init__(self, input_dir, output_dir):
            self.input_dir = input_dir
            self.output_dir = output_dir

    # Create the object
    args = Args("ckpts/llava-llama-3-8b-v1_1-transformers", "ckpts/text_encoder")
    preprocess_text_encoder_tokenizer(args)
    snapshot_download(repo_id="openai/clip-vit-large-patch14", repo_type="model", local_dir="ckpts/text_encoder_2", force_download=True)

def initialize_model(model_path):
    print('initialize_model: ' + model_path)
    if torch.cuda.device_count() == 0:
        return None
    
    args = parse_args()
    models_root_path = Path(model_path)
    if not models_root_path.exists():
        raise ValueError(f"`models_root` not exists: {models_root_path}")
    
    print(f"`models_root` exists: {models_root_path}")
    hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(models_root_path, args=args)
    print('Model initialized: ' + model_path)
    return hunyuan_video_sampler

@spaces.GPU(duration=120)
def generate_video(
    model,
    prompt,
    resolution,
    video_length,
    seed,
    num_inference_steps,
    guidance_scale,
    flow_shift,
    embedded_guidance_scale
):
    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return None
    
    seed = None if seed == -1 else seed
    width, height = resolution.split("x")
    width, height = int(width), int(height)
    negative_prompt = "" # not applicable in the inference

    outputs = model.predict(
        prompt=prompt,
        height=height,
        width=width, 
        video_length=video_length,
        seed=seed,
        negative_prompt=negative_prompt,
        infer_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_videos_per_prompt=1,
        flow_shift=flow_shift,
        batch_size=1,
        embedded_guidance_scale=embedded_guidance_scale
    )
    
    samples = outputs['samples']
    sample = samples[0].unsqueeze(0)
    
    save_path = "./gradio_outputs"
    os.makedirs(save_path, exist_ok=True)
    
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%H:%M:%S")
    video_path = f"{save_path}/{time_flag}_seed{outputs['seeds'][0]}_{outputs['prompts'][0][:100].replace('/','')}.mp4"
    save_videos_grid(sample, video_path, fps=24)
    logger.info(f'Sample saved to: {video_path}')
    
    return video_path

def create_demo(model_path):
    model = initialize_model(model_path)
    
    with gr.Blocks() as demo:
        if torch.cuda.device_count() == 0:
            with gr.Row():
                gr.HTML("""
                    <p style="background-color: red;"><big><big><big><b>⚠️To use <i>Hunyuan Video</i>, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/HunyuanVideo?duplicate=true">duplicate this space</a> and set a GPU with 80 GB VRAM.</b>
    
                    You can't use <i>Hunyuan Video</i> directly here because this space runs on a CPU, which is not enough for <i>Hunyuan Video</i>. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/HunyuanVideo/discussions/new">feedback</a> if you have issues.
                    </big></big></big></p>
                    """)
        gr.Markdown("# Hunyuan Video Generation")
        
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", value="A cat walks on the grass, realistic style.")
                with gr.Row():
                    resolution = gr.Dropdown(
                        choices=[
                            # 720p
                            ("1280x720 (16:9, 720p)", "1280x720"),
                            ("720x1280 (9:16, 720p)", "720x1280"), 
                            ("1104x832 (4:3, 720p)", "1104x832"),
                            ("832x1104 (3:4, 720p)", "832x1104"),
                            ("960x960 (1:1, 720p)", "960x960"),
                            # 540p
                            ("960x544 (16:9, 540p)", "960x544"),
                            ("544x960 (9:16, 540p)", "544x960"),
                            ("832x624 (4:3, 540p)", "832x624"), 
                            ("624x832 (3:4, 540p)", "624x832"),
                            ("720x720 (1:1, 540p)", "720x720"),
                        ],
                        value="832x624",
                        label="Resolution"
                    )
                    video_length = gr.Dropdown(
                        label="Video Length",
                        choices=[
                            ("2s(65f)", 65),
                            ("5s(129f)", 129),
                        ],
                        value=65,
                    )
                num_inference_steps = gr.Slider(1, 100, value=5, step=1, label="Number of Inference Steps")
                
                with gr.Accordion("Advanced Options", open=False):
                    with gr.Column():
                        seed = gr.Slider(label="Seed (-1 for random)", value=-1, minimum=-1, maximum=2**63 - 1, step=1)
                        guidance_scale = gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Guidance Scale")
                        flow_shift = gr.Slider(0.0, 10.0, value=7.0, step=0.1, label="Flow Shift") 
                        embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale")

                generate_btn = gr.Button(value = "🚀 Generate Video", variant = "primary")
            
            with gr.Row():
                output = gr.Video(label = "Generated Video", autoplay = True)

        gr.Markdown("""
## **Alternatives**
If you can't use _Hunyuan Video_, you can use _[CogVideoX](https://huggingface.co/spaces/THUDM/CogVideoX-5B-Space)_ or _[LTX Video Playground](https://huggingface.co/spaces/Lightricks/LTX-Video-Playground)_ instead.
                    """)
        
        generate_btn.click(
            fn=lambda *inputs: generate_video(model, *inputs),
            inputs=[
                prompt,
                resolution,
                video_length,
                seed,
                num_inference_steps,
                guidance_scale,
                flow_shift,
                embedded_guidance_scale
            ],
            outputs=output
        )
    
    return demo

if __name__ == "__main__":
    os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
    demo = create_demo("ckpts")
    demo.queue(10).launch()