File size: 11,443 Bytes
e734794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import streamlit as st

import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer

from PIL import (
    ImageFont,
)

import os
import re
import random
import textwrap
from examples import EXAMPLES
import dummy
import meta
from utils import ext
from utils.api import generate_cook_image
from utils.draw import generate_food_with_logo_image, generate_recipe_image
from utils.st import (
    remote_css,
    local_css,

)
from utils.utils import (
    load_image_from_url,
    load_image_from_local,
    image_to_base64,
    pure_comma_separation
)


class TextGeneration:
    def __init__(self):
        self.debug = False
        self.dummy_outputs = dummy.recipes
        self.tokenizer = None
        self.generator = None
        self.api_ids = []
        self.api_keys = []
        self.api_test = 2
        self.task = "text2text-generation"
        self.model_name_or_path = "flax-community/t5-recipe-generation"
        self.color_frame = "#ffffff"
        self.main_frame = "asset/frame/recipe-bg.png"
        self.no_food = "asset/frame/no_food.png"
        self.logo_frame = "asset/frame/logo.png"
        self.chef_frames = {
            "scheherazade": "asset/frame/food-image-logo-bg-s.png",
            "giovanni": "asset/frame/food-image-logo-bg-g.png",
        }
        self.fonts = {
            "title": ImageFont.truetype("asset/fonts/Poppins-Bold.ttf", 70),
            "sub_title": ImageFont.truetype("asset/fonts/Poppins-Medium.ttf", 30),
            "body_bold": ImageFont.truetype("asset/fonts/Montserrat-Bold.ttf", 22),
            "body": ImageFont.truetype("asset/fonts/Montserrat-Regular.ttf", 18),

        }
        set_seed(42)

    def _skip_special_tokens_and_prettify(self, text):
        recipe_maps = {"<sep>": "--", "<section>": "\n"}
        recipe_map_pattern = "|".join(map(re.escape, recipe_maps.keys()))

        text = re.sub(
            recipe_map_pattern,
            lambda m: recipe_maps[m.group()],
            re.sub("|".join(self.tokenizer.all_special_tokens), "", text)
        )

        data = {"title": "", "ingredients": [], "directions": []}
        for section in text.split("\n"):
            section = section.strip()
            if section.startswith("title:"):
                data["title"] = " ".join(
                    [w.strip().capitalize() for w in section.replace("title:", "").strip().split() if w.strip()]
                )
            elif section.startswith("ingredients:"):
                data["ingredients"] = [s.strip() for s in section.replace("ingredients:", "").split('--')]
            elif section.startswith("directions:"):
                data["directions"] = [s.strip() for s in section.replace("directions:", "").split('--')]
            else:
                pass

        return data

    def load_pipeline(self):
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
        self.generator = pipeline(self.task, model=self.model_name_or_path, tokenizer=self.model_name_or_path)

    def load_api(self):
        app_ids = os.getenv("EDAMAM_APP_ID")
        app_ids = app_ids.split(",") if app_ids else []
        app_keys = os.getenv("EDAMAM_APP_KEY")
        app_keys = app_keys.split(",") if app_keys else []

        if len(app_ids) != len(app_keys):
            self.api_ids = []
            self.api_keys = []

        self.api_ids = app_ids
        self.api_keys = app_keys

    def load(self):
        self.load_api()
        if not self.debug:
            self.load_pipeline()

    def prepare_frame(self, recipe, chef_name):
        frame_path = self.chef_frames[chef_name.lower()]
        food_logo = generate_food_with_logo_image(frame_path, self.logo_frame, recipe["image"])
        frame = generate_recipe_image(
            recipe,
            self.main_frame,
            food_logo,
            self.fonts,
            bg_color="#ffffff"
        )
        return frame

    def generate(self, items, generation_kwargs):
        recipe = self.dummy_outputs[0]
        # recipe = self.dummy_outputs[random.randint(0, len(self.dummy_outputs) - 1)]

        if not self.debug:
            generation_kwargs["num_return_sequences"] = 1
            # generation_kwargs["return_full_text"] = False
            generation_kwargs["return_tensors"] = True
            generation_kwargs["return_text"] = False

            generated_ids = self.generator(
                items,
                **generation_kwargs,
            )[0]["generated_token_ids"]
            recipe = self.tokenizer.decode(generated_ids, skip_special_tokens=False)
            recipe = self._skip_special_tokens_and_prettify(recipe)

        if self.api_ids and self.api_keys and len(self.api_ids) == len(self.api_keys):
            test = 0
            for i in range(len(self.api_keys)):
                if test > self.api_test:
                    recipe["image"] = None
                    break
                image = generate_cook_image(recipe["title"].lower(), self.api_ids[i], self.api_keys[i])
                test += 1
                if image:
                    recipe["image"] = image
                    break
        else:
            recipe["image"] = None

        return recipe

    def generate_frame(self, recipe, chef_name):
        return self.prepare_frame(recipe, chef_name)


@st.cache(allow_output_mutation=True)
def load_text_generator():
    generator = TextGeneration()
    generator.load()
    return generator


chef_top = {
    "max_length": 512,
    "min_length": 64,
    "no_repeat_ngram_size": 3,
    "do_sample": True,
    "top_k": 60,
    "top_p": 0.95,
    "num_return_sequences": 1
}
chef_beam = {
    "max_length": 512,
    "min_length": 64,
    "no_repeat_ngram_size": 3,
    "early_stopping": True,
    "num_beams": 5,
    "length_penalty": 1.5,
    "num_return_sequences": 1
}


def main():
    st.set_page_config(
        page_title="Chef Transformer",
        page_icon="🍲",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    generator = load_text_generator()
    # if hasattr(st, "session_state"):
    #     if 'get_random_frame' not in st.session_state:
    #         st.session_state.get_random_frame = generator.frames[0]
    # else:
    #     get_random_frame = generator.frames[0]

    remote_css("https://fonts.googleapis.com/css2?family=Montserrat:wght@400;600&family=Poppins:wght@600&display=swap")
    local_css("asset/css/style.css")

    col1, col2 = st.columns([6, 4])
    with col2:
        st.image(load_image_from_local("asset/images/chef-transformer-transparent.png"), width=300)
        st.markdown(meta.SIDEBAR_INFO, unsafe_allow_html=True)

        with st.expander("Where did this story start?", expanded=True):
            st.markdown(meta.STORY, unsafe_allow_html=True)

    with col1:
        st.markdown(meta.HEADER_INFO, unsafe_allow_html=True)

        st.markdown(meta.CHEF_INFO, unsafe_allow_html=True)
        chef = st.selectbox("Choose your chef", index=0, options=["Chef Scheherazade", "Chef Giovanni"])

        prompts = list(EXAMPLES.keys()) + ["Custom"]
        prompt = st.selectbox(
            'Examples (select from this list)',
            prompts,
            # index=len(prompts) - 1,
            index=0
        )

        if prompt == "Custom":
            prompt_box = ""
        else:
            prompt_box = EXAMPLES[prompt]

        items = st.text_area(
            'Insert your food items here (separated by `,`): ',
            pure_comma_separation(prompt_box, return_list=False),
        )
        items = pure_comma_separation(items, return_list=False)
        entered_items = st.empty()

    recipe_button = st.button('Get Recipe!')

    st.markdown(
        "<hr />",
        unsafe_allow_html=True
    )
    if recipe_button:
        # if hasattr(st, "session_state"):
        #     st.session_state.get_random_frame = generator.frames[random.randint(0, len(generator.frames)) - 1]
        # else:
        #     get_random_frame = generator.frames[random.randint(0, len(generator.frames)) - 1]

        entered_items.markdown("**Generate recipe for:** " + items)
        with st.spinner("Generating recipe..."):

            if not isinstance(items, str) or not len(items) > 1:
                entered_items.markdown(
                    f"**{chef}** would like to know what ingredients do you like to use in "
                    f"your food? "
                )
            else:
                gen_kw = chef_top if chef == "Chef Scheherazade" else chef_beam
                generated_recipe = generator.generate(items, gen_kw)

                title = generated_recipe["title"]
                food_image = generated_recipe["image"]
                food_image = load_image_from_url(food_image, rgba_mode=True, default_image=generator.no_food)
                food_image = image_to_base64(food_image)

                ingredients = ext.ingredients(
                    generated_recipe["ingredients"],
                    pure_comma_separation(items, return_list=True)
                )
                # ingredients = [textwrap.fill(item, 10).replace("\n", "<br />   ") for item in ingredients]

                directions = ext.directions(generated_recipe["directions"])
                # directions = [textwrap.fill(item, 70).replace("\n", "<br />   ") for item in directions]

                generated_recipe["by"] = chef

                r1, r2 = st.columns([6, 2])

                with r2:
                    # st.write(st.session_state.get_random_frame)
                    # if hasattr(st, "session_state"):
                    #     recipe_post = generator.generate_frame(generated_recipe, st.session_state.get_random_frame)
                    # else:
                    #     recipe_post = generator.generate_frame(generated_recipe, get_random_frame)

                    recipe_post = generator.generate_frame(generated_recipe, chef.split()[-1])

                    st.image(
                        recipe_post,
                        # width=500,
                        caption="Save image and share on your social media",
                        use_column_width="auto",
                        output_format="PNG"
                    )

                with r1:
                    st.markdown(
                        " ".join([
                            "<div class='r-text-recipe'>",
                            "<div class='food-title'>",
                            f"<img src='{food_image}' />",
                            f"<h2 class='font-title text-bold'>{title}</h2>",
                            "</div>",
                            '<div class="divider"><div class="divider-mask"></div></div>',
                            "<h3 class='ingredients font-body text-bold'>Ingredients</h3>",
                            "<ul class='ingredients-list font-body'>",
                            " ".join([f'<li>{item}</li>' for item in ingredients]),
                            "</ul>",
                            "<h3 class='directions font-body text-bold'>Directions</h3>",
                            "<ol class='ingredients-list font-body'>",
                            " ".join([f'<li>{item}</li>' for item in directions]),
                            "</ol>",
                            "</div>"
                        ]),
                        unsafe_allow_html=True
                    )


if __name__ == '__main__':
    main()