File size: 32,527 Bytes
1d177b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "source": [
        "!pip install rembg[gpu] opencv-python-headless pillow tqdm onnxruntime"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "mzMbPGrmcntQ",
        "outputId": "88a9177b-793b-4dae-f666-72e440e74acc"
      },
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: opencv-python-headless in /usr/local/lib/python3.11/dist-packages (4.11.0.86)\n",
            "Requirement already satisfied: pillow in /usr/local/lib/python3.11/dist-packages (11.2.1)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (4.67.1)\n",
            "Collecting onnxruntime\n",
            "  Downloading onnxruntime-1.22.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (4.5 kB)\n",
            "Collecting rembg[gpu]\n",
            "  Downloading rembg-2.0.66-py3-none-any.whl.metadata (21 kB)\n",
            "Requirement already satisfied: jsonschema in /usr/local/lib/python3.11/dist-packages (from rembg[gpu]) (4.24.0)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from rembg[gpu]) (2.0.2)\n",
            "Requirement already satisfied: pooch in /usr/local/lib/python3.11/dist-packages (from rembg[gpu]) (1.8.2)\n",
            "Collecting pymatting (from rembg[gpu])\n",
            "  Downloading pymatting-1.1.14-py3-none-any.whl.metadata (7.7 kB)\n",
            "Requirement already satisfied: scikit-image in /usr/local/lib/python3.11/dist-packages (from rembg[gpu]) (0.25.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from rembg[gpu]) (1.15.3)\n",
            "Collecting onnxruntime-gpu (from rembg[gpu])\n",
            "  Downloading onnxruntime_gpu-1.22.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (4.9 kB)\n",
            "Collecting coloredlogs (from onnxruntime)\n",
            "  Downloading coloredlogs-15.0.1-py2.py3-none-any.whl.metadata (12 kB)\n",
            "Requirement already satisfied: flatbuffers in /usr/local/lib/python3.11/dist-packages (from onnxruntime) (25.2.10)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from onnxruntime) (24.2)\n",
            "Requirement already satisfied: protobuf in /usr/local/lib/python3.11/dist-packages (from onnxruntime) (5.29.5)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.11/dist-packages (from onnxruntime) (1.13.1)\n",
            "Collecting humanfriendly>=9.1 (from coloredlogs->onnxruntime)\n",
            "  Downloading humanfriendly-10.0-py2.py3-none-any.whl.metadata (9.2 kB)\n",
            "Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.11/dist-packages (from jsonschema->rembg[gpu]) (25.3.0)\n",
            "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.11/dist-packages (from jsonschema->rembg[gpu]) (2025.4.1)\n",
            "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.11/dist-packages (from jsonschema->rembg[gpu]) (0.36.2)\n",
            "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.11/dist-packages (from jsonschema->rembg[gpu]) (0.25.1)\n",
            "Requirement already satisfied: platformdirs>=2.5.0 in /usr/local/lib/python3.11/dist-packages (from pooch->rembg[gpu]) (4.3.8)\n",
            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.11/dist-packages (from pooch->rembg[gpu]) (2.32.3)\n",
            "Requirement already satisfied: numba!=0.49.0 in /usr/local/lib/python3.11/dist-packages (from pymatting->rembg[gpu]) (0.60.0)\n",
            "Requirement already satisfied: networkx>=3.0 in /usr/local/lib/python3.11/dist-packages (from scikit-image->rembg[gpu]) (3.5)\n",
            "Requirement already satisfied: imageio!=2.35.0,>=2.33 in /usr/local/lib/python3.11/dist-packages (from scikit-image->rembg[gpu]) (2.37.0)\n",
            "Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.11/dist-packages (from scikit-image->rembg[gpu]) (2025.6.11)\n",
            "Requirement already satisfied: lazy-loader>=0.4 in /usr/local/lib/python3.11/dist-packages (from scikit-image->rembg[gpu]) (0.4)\n",
            "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy->onnxruntime) (1.3.0)\n",
            "Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /usr/local/lib/python3.11/dist-packages (from numba!=0.49.0->pymatting->rembg[gpu]) (0.43.0)\n",
            "Requirement already satisfied: typing-extensions>=4.4.0 in /usr/local/lib/python3.11/dist-packages (from referencing>=0.28.4->jsonschema->rembg[gpu]) (4.14.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->pooch->rembg[gpu]) (3.4.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->pooch->rembg[gpu]) (3.10)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->pooch->rembg[gpu]) (2.4.0)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.19.0->pooch->rembg[gpu]) (2025.6.15)\n",
            "Downloading onnxruntime-1.22.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.4 MB)\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.4/16.4 MB\u001b[0m \u001b[31m68.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading coloredlogs-15.0.1-py2.py3-none-any.whl (46 kB)\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading onnxruntime_gpu-1.22.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (283.2 MB)\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m283.2/283.2 MB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading pymatting-1.1.14-py3-none-any.whl (54 kB)\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.7/54.7 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading rembg-2.0.66-py3-none-any.whl (41 kB)\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.7/41.7 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading humanfriendly-10.0-py2.py3-none-any.whl (86 kB)\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hInstalling collected packages: humanfriendly, pymatting, coloredlogs, onnxruntime-gpu, onnxruntime, rembg\n",
            "Successfully installed coloredlogs-15.0.1 humanfriendly-10.0 onnxruntime-1.22.0 onnxruntime-gpu-1.22.0 pymatting-1.1.14 rembg-2.0.66\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "HKYwL78egwwZ",
        "outputId": "af67d853-0f86-4b1f-b4be-a09bcb1b2c97"
      },
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Mounted at /content/drive\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "c311ZPEYb0wH",
        "outputId": "75c250d4-9dc8-4aed-ff4f-fe39c82633a3"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "=== PRÉPROCESSING DES EMPREINTES DIGITALES ===\n",
            "Dossier d'entrΓ©e: /content/drive/MyDrive/DATA\n",
            "Dossier de sortie: /content/processed_fingerprints_structured\n",
            "Taille cible: (128, 128)\n",
            "Compatible VGG16: True\n",
            "\n",
            "=== ANALYSE DE LA STRUCTURE DU DOSSIER ===\n",
            "Total d'images trouvΓ©es: 2100\n",
            "RΓ©partition par dossier:\n",
            "  LANDRY: 210 images\n",
            "  DIVINE: 210 images\n",
            "  JOEL: 210 images\n",
            "  MAURICE: 210 images\n",
            "  NATHANAEL: 210 images\n",
            "  WILSON: 210 images\n",
            "  LONTSI: 210 images\n",
            "  DANILO: 210 images\n",
            "  KETSIA: 210 images\n",
            "  PATRICE: 210 images\n",
            "Traitement de 2100 images...\n",
            "Structure de dossiers prΓ©servΓ©e: /content/drive/MyDrive/DATA -> /content/processed_fingerprints_structured/processed_with_structure\n",
            "Mode VGG16 : Images en RGB avec taille personnalisΓ©e\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "\rTraitement des images:   0%|          | 0/2100 [00:00<?, ?it/s]Downloading data from 'https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx' to file '/root/.u2net/u2net.onnx'.\n",
            "\n",
            "  0%|                                               | 0.00/176M [00:00<?, ?B/s]\u001b[A\n",
            "  0%|                                       | 80.9k/176M [00:00<04:27, 656kB/s]\u001b[A\n",
            "  0%|                                       | 392k/176M [00:00<01:28, 1.97MB/s]\u001b[A\n",
            "  1%|▍                                     | 1.78M/176M [00:00<00:27, 6.27MB/s]\u001b[A\n",
            "  1%|β–Œ                                     | 2.48M/176M [00:00<00:27, 6.28MB/s]\u001b[A\n",
            "  3%|β–‰                                     | 4.59M/176M [00:00<00:15, 11.1MB/s]\u001b[A\n",
            "  6%|β–ˆβ–ˆ                                    | 9.76M/176M [00:00<00:06, 24.0MB/s]\u001b[A\n",
            "  9%|β–ˆβ–ˆβ–ˆβ–                                  | 16.0M/176M [00:00<00:04, 36.0MB/s]\u001b[A\n",
            " 13%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š                                 | 22.3M/176M [00:00<00:03, 44.2MB/s]\u001b[A\n",
            " 17%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž                               | 29.2M/176M [00:00<00:02, 51.8MB/s]\u001b[A\n",
            " 20%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ                              | 35.1M/176M [00:01<00:02, 54.0MB/s]\u001b[A\n",
            " 24%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰                             | 41.6M/176M [00:01<00:02, 57.4MB/s]\u001b[A\n",
            " 27%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž                           | 47.6M/176M [00:01<00:02, 58.4MB/s]\u001b[A\n",
            " 30%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ                          | 53.6M/176M [00:01<00:02, 58.7MB/s]\u001b[A\n",
            " 34%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š                         | 59.5M/176M [00:01<00:02, 56.3MB/s]\u001b[A\n",
            " 37%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–                       | 65.9M/176M [00:01<00:01, 58.4MB/s]\u001b[A\n",
            " 41%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ                      | 72.0M/176M [00:01<00:01, 59.1MB/s]\u001b[A\n",
            " 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰                     | 78.2M/176M [00:01<00:01, 60.1MB/s]\u001b[A\n",
            " 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž                   | 84.9M/176M [00:01<00:01, 62.3MB/s]\u001b[A\n",
            " 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š                  | 91.5M/176M [00:01<00:01, 63.4MB/s]\u001b[A\n",
            " 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–                | 98.3M/176M [00:02<00:01, 64.6MB/s]\u001b[A\n",
            " 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž               | 105M/176M [00:02<00:01, 65.8MB/s]\u001b[A\n",
            " 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š              | 112M/176M [00:02<00:00, 67.0MB/s]\u001b[A\n",
            " 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž            | 119M/176M [00:02<00:00, 58.7MB/s]\u001b[A\n",
            " 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹           | 125M/176M [00:02<00:01, 45.8MB/s]\u001b[A\n",
            " 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š          | 130M/176M [00:02<00:01, 42.8MB/s]\u001b[A\n",
            " 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š         | 135M/176M [00:02<00:00, 42.4MB/s]\u001b[A\n",
            " 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š        | 139M/176M [00:03<00:00, 39.9MB/s]\u001b[A\n",
            " 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š       | 143M/176M [00:03<00:00, 40.1MB/s]\u001b[A\n",
            " 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹      | 148M/176M [00:03<00:00, 40.9MB/s]\u001b[A\n",
            " 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 152M/176M [00:03<00:00, 41.4MB/s]\u001b[A\n",
            " 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 156M/176M [00:03<00:00, 41.9MB/s]\u001b[A\n",
            " 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 160M/176M [00:03<00:00, 41.0MB/s]\u001b[A\n",
            " 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 165M/176M [00:03<00:00, 39.9MB/s]\u001b[A\n",
            " 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 169M/176M [00:03<00:00, 41.2MB/s]\u001b[A\n",
            " 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 174M/176M [00:03<00:00, 42.3MB/s]\u001b[A\n",
            "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176M/176M [00:00<00:00, 65.3GB/s]\n",
            "Traitement des images:  18%|β–ˆβ–Š        | 376/2100 [23:59<2:12:56,  4.63s/it]"
          ]
        }
      ],
      "source": [
        "import os\n",
        "import cv2\n",
        "import numpy as np\n",
        "from PIL import Image\n",
        "import zipfile\n",
        "from rembg import remove\n",
        "from tqdm import tqdm\n",
        "import shutil\n",
        "from google.colab import files\n",
        "import io\n",
        "\n",
        "def get_all_image_files_with_structure(folder_path):\n",
        "    \"\"\"\n",
        "    Récupère tous les fichiers d'images dans un dossier en préservant la structure\n",
        "    Retourne une liste de tuples (chemin_complet, chemin_relatif)\n",
        "    \"\"\"\n",
        "    supported_formats = ('.png', '.jpg', '.jpeg', '.bmp', '.tiff', '.tif')\n",
        "    image_files = []\n",
        "\n",
        "    for root, dirs, files in os.walk(folder_path):\n",
        "        for file in files:\n",
        "            if file.lower().endswith(supported_formats):\n",
        "                full_path = os.path.join(root, file)\n",
        "                relative_path = os.path.relpath(full_path, folder_path)\n",
        "                image_files.append((full_path, relative_path))\n",
        "\n",
        "    return image_files\n",
        "\n",
        "def resize_image(image, target_size=(224, 224)):\n",
        "    \"\"\"\n",
        "    Redimensionne l'image Γ  la taille cible (224x224 pour VGG16)\n",
        "    \"\"\"\n",
        "    if isinstance(image, Image.Image):\n",
        "        return image.resize(target_size, Image.Resampling.LANCZOS)\n",
        "    else:\n",
        "        return cv2.resize(image, target_size, interpolation=cv2.INTER_LANCZOS4)\n",
        "\n",
        "def enhance_contrast_histogram_equalization(image, keep_rgb=True):\n",
        "    \"\"\"\n",
        "    AmΓ©liore le contraste avec Γ©galisation d'histogramme\n",
        "    Garde les 3 canaux RGB pour VGG16 si keep_rgb=True\n",
        "    \"\"\"\n",
        "    if isinstance(image, Image.Image):\n",
        "        img_array = np.array(image)\n",
        "\n",
        "        if keep_rgb and len(img_array.shape) == 3:\n",
        "            # Appliquer CLAHE sur chaque canal RGB sΓ©parΓ©ment\n",
        "            img_enhanced = np.zeros_like(img_array)\n",
        "            clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))\n",
        "\n",
        "            for i in range(3):  # Pour chaque canal RGB\n",
        "                img_enhanced[:, :, i] = clahe.apply(img_array[:, :, i])\n",
        "\n",
        "            return Image.fromarray(img_enhanced)\n",
        "        else:\n",
        "            # Version originale pour niveaux de gris\n",
        "            if len(img_array.shape) == 3:\n",
        "                img_gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)\n",
        "            else:\n",
        "                img_gray = img_array\n",
        "            clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))\n",
        "            img_enhanced = clahe.apply(img_gray)\n",
        "            return Image.fromarray(img_enhanced)\n",
        "    else:\n",
        "        if keep_rgb and len(image.shape) == 3:\n",
        "            img_enhanced = np.zeros_like(image)\n",
        "            clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))\n",
        "\n",
        "            for i in range(3):\n",
        "                img_enhanced[:, :, i] = clahe.apply(image[:, :, i])\n",
        "\n",
        "            return img_enhanced\n",
        "        else:\n",
        "            if len(image.shape) == 3:\n",
        "                img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n",
        "            else:\n",
        "                img_gray = image\n",
        "            clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))\n",
        "            img_enhanced = clahe.apply(img_gray)\n",
        "            return img_enhanced\n",
        "\n",
        "def ensure_rgb_format(image):\n",
        "    \"\"\"\n",
        "    S'assure que l'image est en format RGB 3 canaux pour VGG16\n",
        "    \"\"\"\n",
        "    if isinstance(image, Image.Image):\n",
        "        if image.mode == 'L':  # Niveaux de gris\n",
        "            return image.convert('RGB')\n",
        "        elif image.mode == 'RGBA':  # Avec canal alpha\n",
        "            return image.convert('RGB')\n",
        "        else:\n",
        "            return image\n",
        "    else:\n",
        "        if len(image.shape) == 2:  # Niveaux de gris\n",
        "            return cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)\n",
        "        elif image.shape[2] == 4:  # RGBA\n",
        "            return cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)\n",
        "        else:\n",
        "            return image\n",
        "\n",
        "def remove_background_rembg(image):\n",
        "    \"\"\"\n",
        "    Supprime le fond de l'image avec rembg\n",
        "    \"\"\"\n",
        "    if not isinstance(image, Image.Image):\n",
        "        if len(image.shape) == 2:\n",
        "            image = Image.fromarray(image).convert('RGB')\n",
        "        else:\n",
        "            image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))\n",
        "\n",
        "    image_no_bg = remove(image)\n",
        "\n",
        "    # Convertir RGBA vers RGB avec fond blanc pour VGG16\n",
        "    if image_no_bg.mode == 'RGBA':\n",
        "        background = Image.new('RGB', image_no_bg.size, (255, 255, 255))  # Fond blanc\n",
        "        background.paste(image_no_bg, mask=image_no_bg.split()[-1])  # Utiliser canal alpha comme masque\n",
        "        return background\n",
        "\n",
        "    return image_no_bg\n",
        "\n",
        "def process_single_image_with_structure(image_path, output_folder, relative_path,\n",
        "                                       target_size=(224, 224), vgg16_compatible=True):\n",
        "    \"\"\"\n",
        "    Traite une seule image en prΓ©servant sa position dans la structure de dossiers\n",
        "    \"\"\"\n",
        "    try:\n",
        "        image = Image.open(image_path)\n",
        "\n",
        "        # Redimensionnement\n",
        "        image_resized = resize_image(image, target_size)\n",
        "\n",
        "        # AmΓ©lioration du contraste (garde RGB si compatible VGG16)\n",
        "        image_enhanced = enhance_contrast_histogram_equalization(\n",
        "            image_resized, keep_rgb=vgg16_compatible\n",
        "        )\n",
        "\n",
        "        # Suppression du fond\n",
        "        image_no_bg = remove_background_rembg(image_enhanced)\n",
        "\n",
        "        # S'assurer du format RGB pour VGG16\n",
        "        if vgg16_compatible:\n",
        "            image_no_bg = ensure_rgb_format(image_no_bg)\n",
        "\n",
        "        # CrΓ©er la structure de dossiers de sortie\n",
        "        output_dir = os.path.dirname(os.path.join(output_folder, relative_path))\n",
        "        os.makedirs(output_dir, exist_ok=True)\n",
        "\n",
        "        # Changer l'extension en .png pour uniformiser\n",
        "        base_name = os.path.splitext(os.path.basename(relative_path))[0]\n",
        "        output_relative_path = os.path.join(os.path.dirname(relative_path), f\"{base_name}.png\")\n",
        "        output_path = os.path.join(output_folder, output_relative_path)\n",
        "\n",
        "        # Sauvegarde\n",
        "        image_no_bg.save(output_path, \"PNG\")\n",
        "\n",
        "        return output_path, True\n",
        "    except Exception as e:\n",
        "        print(f\"Erreur lors du traitement de {image_path}: {str(e)}\")\n",
        "        return None, False\n",
        "\n",
        "def process_folder_with_structure(input_folder, output_folder,\n",
        "                                 target_size=(224, 224), vgg16_compatible=True):\n",
        "    \"\"\"\n",
        "    Traite toutes les images d'un dossier en prΓ©servant la structure\n",
        "    \"\"\"\n",
        "    os.makedirs(output_folder, exist_ok=True)\n",
        "    image_files = get_all_image_files_with_structure(input_folder)\n",
        "\n",
        "    if not image_files:\n",
        "        print(f\"Aucune image trouvΓ©e dans {input_folder}\")\n",
        "        return []\n",
        "\n",
        "    print(f\"Traitement de {len(image_files)} images...\")\n",
        "    print(f\"Structure de dossiers prΓ©servΓ©e: {input_folder} -> {output_folder}\")\n",
        "    if vgg16_compatible:\n",
        "        print(\"Mode VGG16 : Images en RGB avec taille personnalisΓ©e\")\n",
        "\n",
        "    processed_files = []\n",
        "    successful_count = 0\n",
        "\n",
        "    for image_path, relative_path in tqdm(image_files, desc=\"Traitement des images\"):\n",
        "        output_path, success = process_single_image_with_structure(\n",
        "            image_path, output_folder, relative_path, target_size, vgg16_compatible\n",
        "        )\n",
        "        if success:\n",
        "            processed_files.append(output_path)\n",
        "            successful_count += 1\n",
        "\n",
        "    print(f\"Traitement terminé: {successful_count}/{len(image_files)} images traitées avec succès\")\n",
        "    return processed_files\n",
        "\n",
        "def create_zip_archive(folder_path, zip_filename):\n",
        "    \"\"\"\n",
        "    CrΓ©e une archive ZIP du dossier traitΓ© et la rend tΓ©lΓ©chargeable\n",
        "    \"\"\"\n",
        "    try:\n",
        "        with zipfile.ZipFile(zip_filename, 'w', zipfile.ZIP_DEFLATED) as zipf:\n",
        "            for root, dirs, files in os.walk(folder_path):\n",
        "                for file in files:\n",
        "                    file_path = os.path.join(root, file)\n",
        "                    arcname = os.path.relpath(file_path, folder_path)\n",
        "                    zipf.write(file_path, arcname)\n",
        "        print(f\"Archive ZIP créée: {zip_filename}\")\n",
        "        files.download(zip_filename)\n",
        "        return True\n",
        "    except Exception as e:\n",
        "        print(f\"Erreur lors de la crΓ©ation de l'archive ZIP: {str(e)}\")\n",
        "        return False\n",
        "\n",
        "def analyze_folder_structure(input_folder):\n",
        "    \"\"\"\n",
        "    Analyse et affiche la structure du dossier d'entrΓ©e\n",
        "    \"\"\"\n",
        "    print(\"\\n=== ANALYSE DE LA STRUCTURE DU DOSSIER ===\")\n",
        "    structure_info = {}\n",
        "    total_images = 0\n",
        "\n",
        "    for root, dirs, files in os.walk(input_folder):\n",
        "        relative_path = os.path.relpath(root, input_folder)\n",
        "        if relative_path == '.':\n",
        "            relative_path = 'racine'\n",
        "\n",
        "        image_count = sum(1 for f in files if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff', '.tif')))\n",
        "        if image_count > 0:\n",
        "            structure_info[relative_path] = image_count\n",
        "            total_images += image_count\n",
        "\n",
        "    print(f\"Total d'images trouvΓ©es: {total_images}\")\n",
        "    print(\"RΓ©partition par dossier:\")\n",
        "    for folder, count in structure_info.items():\n",
        "        print(f\"  {folder}: {count} images\")\n",
        "\n",
        "    return structure_info\n",
        "\n",
        "def preprocess_fingerprints_complete(input_folder=\"/content/drive/MyDrive/DATA\",\n",
        "                                   output_base_folder=\"/content/processed_fingerprints\",\n",
        "                                   target_size=(224, 224),\n",
        "                                   vgg16_compatible=True,\n",
        "                                   create_zip=True,\n",
        "                                   cleanup_temp=False):\n",
        "    \"\"\"\n",
        "    Fonction principale pour le prΓ©processing complet des empreintes digitales\n",
        "    PrΓ©serve la structure de dossiers originale\n",
        "    \"\"\"\n",
        "    print(\"=== PRÉPROCESSING DES EMPREINTES DIGITALES ===\")\n",
        "    print(f\"Dossier d'entrΓ©e: {input_folder}\")\n",
        "    print(f\"Dossier de sortie: {output_base_folder}\")\n",
        "    print(f\"Taille cible: {target_size}\")\n",
        "    print(f\"Compatible VGG16: {vgg16_compatible}\")\n",
        "\n",
        "    if not os.path.exists(input_folder):\n",
        "        print(f\"Erreur: Le dossier {input_folder} n'existe pas\")\n",
        "        return False\n",
        "\n",
        "    # Analyser la structure du dossier d'entrΓ©e\n",
        "    analyze_folder_structure(input_folder)\n",
        "\n",
        "    os.makedirs(output_base_folder, exist_ok=True)\n",
        "    temp_folder = os.path.join(output_base_folder, \"processed_with_structure\")\n",
        "\n",
        "    processed_files = process_folder_with_structure(input_folder, temp_folder,\n",
        "                                                   target_size, vgg16_compatible)\n",
        "\n",
        "    if not processed_files:\n",
        "        print(\"Aucune image traitée avec succès\")\n",
        "        return False\n",
        "\n",
        "    print(f\"\\n=== STRUCTURE PRÉSERVÉE ===\")\n",
        "    print(f\"Les images traitΓ©es conservent la mΓͺme organisation que le dossier original\")\n",
        "\n",
        "    if create_zip:\n",
        "        zip_filename = os.path.join(output_base_folder, \"fingerprints_processed_structured.zip\")\n",
        "        zip_success = create_zip_archive(temp_folder, zip_filename)\n",
        "\n",
        "        if zip_success:\n",
        "            zip_size = os.path.getsize(zip_filename) / (1024 * 1024)\n",
        "            print(f\"Taille de l'archive: {zip_size:.2f} MB\")\n",
        "            if cleanup_temp:\n",
        "                shutil.rmtree(temp_folder)\n",
        "                print(\"Dossier temporaire supprimΓ©\")\n",
        "            print(f\"Archive avec structure prΓ©servΓ©e: {zip_filename}\")\n",
        "            return zip_filename\n",
        "    else:\n",
        "        print(f\"Images traitΓ©es avec structure prΓ©servΓ©e dans: {temp_folder}\")\n",
        "        return temp_folder\n",
        "\n",
        "def main():\n",
        "    \"\"\"\n",
        "    Fonction principale pour exΓ©cution dans Colab - Version avec structure prΓ©servΓ©e\n",
        "    \"\"\"\n",
        "    # Paramètres\n",
        "    output_folder = \"/content/processed_fingerprints_structured\"\n",
        "    target_size = (128, 128)  # Modifiable selon les besoins\n",
        "\n",
        "    # ExΓ©cuter le preprocessing avec prΓ©servation de structure\n",
        "    result = preprocess_fingerprints_complete(\n",
        "        input_folder=\"/content/drive/MyDrive/DATA\",\n",
        "        output_base_folder=output_folder,\n",
        "        target_size=target_size,\n",
        "        vgg16_compatible=True,\n",
        "        create_zip=True,\n",
        "        cleanup_temp=False  # Garder les dossiers pour vΓ©rification\n",
        "    )\n",
        "\n",
        "    if result:\n",
        "        print(f\"\\nβœ… PrΓ©processing terminΓ© avec succΓ¨s!\")\n",
        "        print(f\"Structure prΓ©servΓ©e: {result}\")\n",
        "        print(\"\\nCaractΓ©ristiques des images:\")\n",
        "        print(\"- Format: PNG RGB (3 canaux)\")\n",
        "        print(\"- Fond: Blanc (après suppression)\")\n",
        "        print(\"- Contraste: AmΓ©liorΓ© par canal\")\n",
        "        print(\"- Structure: Identique au dossier original\")\n",
        "        print(\"\\nπŸ—‚οΈ  La hiΓ©rarchie de dossiers a Γ©tΓ© conservΓ©e intΓ©gralement\")\n",
        "    else:\n",
        "        print(\"\\n❌ Γ‰chec du prΓ©processing\")\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    main()"
      ]
    }
  ]
}