Spaces:
Sleeping
Sleeping
File size: 20,822 Bytes
10d82a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import streamlit as st
import pandas as pd
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
import networkx as nx
import plotly.graph_objects as go
from itertools import combinations
def generate_popularity_trends(df):
st.header("Popularity Trends Over Time")
tab1, tab2 = st.tabs(["Average Popularity", "Individual Songs"])
with tab1:
st.markdown("<span style='color:blue'>**Average Popularity by Decade**</span>: Tracks how song popularity has <span style='color:red'>changed over time</span>. This <span style='color:green'>blue</span> line chart highlights peaks.", unsafe_allow_html=True)
if 'Decade' in df.columns:
avg_pop_by_decade = df.groupby(
'Decade')['Popularity'].mean().reset_index()
fig1 = px.line(avg_pop_by_decade, x='Decade', y='Popularity',
title='Average Popularity by Decade', color_discrete_sequence=['blue'])
fig1.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig1)
else:
st.error("Cannot plot: 'Decade' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Song Popularity Over Time**</span>: Highlights individual trends with <span style='color:red'>red</span> points, showing <span style='color:green'>green</span> details on hover.", unsafe_allow_html=True)
if 'Year' in df.columns:
fig2 = px.scatter(df, x='Year', y='Popularity', title='Song Popularity Over Time', hover_data=[
'Track Name', 'Artist Name(s)'], color_discrete_sequence=['red'])
fig2.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig2)
else:
st.error("Cannot plot: 'Year' column missing.")
def generate_audio_features(df):
st.header("Audio Features Analysis")
feature = st.selectbox(
"Select Feature", ['Danceability', 'Energy', 'Tempo', 'Loudness'])
tab1, tab2, tab3 = st.tabs(["Distribution", "By Decade", "Correlations"])
with tab1:
st.markdown(
f"<span style='color:blue'>**Distribution of {feature}**</span>: Shows variation in <span style='color:red'>{feature.lower()}</span> with <span style='color:green'>green</span> bars.", unsafe_allow_html=True)
fig3 = px.histogram(
df, x=feature, title=f'Distribution of {feature}', color_discrete_sequence=['green'])
fig3.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig3)
with tab2:
st.markdown(
f"<span style='color:blue'>**{feature} by Decade**</span>: Compares <span style='color:red'>{feature.lower()}</span> across decades with <span style='color:green'>green</span> boxes.", unsafe_allow_html=True)
if 'Decade' in df.columns:
fig4 = px.box(df, x='Decade', y=feature,
title=f'{feature} Distribution by Decade', color_discrete_sequence=['green'])
fig4.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig4)
else:
st.error("Cannot plot: 'Decade' column missing.")
with tab3:
st.markdown("<span style='color:blue'>**Feature Correlations**</span>: Explores relationships with <span style='color:red'>multi-colored</span> scatter points.", unsafe_allow_html=True)
fig, ax = plt.subplots()
sns.pairplot(df[['Energy', 'Danceability', 'Valence', 'Tempo']])
st.pyplot(fig)
def generate_genre_analysis(df):
st.header("Genre & Artist Analysis")
tab1, tab2, tab3 = st.tabs(
["Top Genres", "Genre Distribution", "Artist Popularity"])
with tab1:
st.markdown("<span style='color:blue'>**Top Genres by Decade**</span>: Shows frequent genres with <span style='color:red'>red</span> bars, <span style='color:green'>green</span> highlights.", unsafe_allow_html=True)
if 'Decade' in df.columns:
genre_decade = df.explode('Genres').groupby(
['Decade', 'Genres']).size().reset_index(name='Count')
top_genres = genre_decade.groupby('Decade').apply(
lambda x: x.nlargest(5, 'Count')).reset_index(drop=True)
fig5 = px.bar(top_genres, x='Decade', y='Count', color='Genres',
title='Top Genres by Decade', color_discrete_sequence=px.colors.qualitative.Set1)
fig5.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig5)
else:
st.error("Cannot plot: 'Decade' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Genre Distribution**</span>: Breaks down genres with <span style='color:red'>multi-colored</span> pie slices.", unsafe_allow_html=True)
genre_counts = df.explode(
'Genres')['Genres'].value_counts().reset_index()
fig6 = px.pie(genre_counts, values='count', names='Genres',
title='Genre Distribution', color_discrete_sequence=px.colors.qualitative.Set2)
fig6.update_layout(width=800, height=400)
st.plotly_chart(fig6)
with tab3:
st.markdown("<span style='color:blue'>**Artist Popularity Heatmap**</span>: Visualizes popularity with <span style='color:red'>red</span> intensity.", unsafe_allow_html=True)
if 'Artist Name(s)' in df.columns:
artist_pop = df.groupby('Artist Name(s)')[
'Popularity'].mean().reset_index()
fig7 = px.imshow(pd.pivot_table(df, values='Popularity', index='Artist Name(s)', aggfunc='mean').fillna(
0), title='Artist Popularity Heatmap', color_continuous_scale='Reds')
fig7.update_layout(width=800, height=400)
st.plotly_chart(fig7)
else:
st.error("Cannot plot: 'Artist Name(s)' column missing.")
def generate_explicit_trends(df):
st.header("Explicit Content Trends")
st.markdown("<span style='color:blue'>**Explicit vs Non-Explicit Songs**</span>: Compares content with <span style='color:red'>stacked bars</span> in <span style='color:green'>green</span> and <span style='color:purple'>purple</span>.", unsafe_allow_html=True)
if 'Decade' in df.columns and 'Explicit' in df.columns:
explicit_by_decade = df.groupby(
['Decade', 'Explicit']).size().unstack().fillna(0)
fig8 = px.bar(explicit_by_decade, barmode='stack',
title='Explicit vs Non-Explicit Songs by Decade', color_discrete_sequence=['green', 'purple'])
fig8.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig8)
else:
st.error("Cannot plot: 'Decade' or 'Explicit' column missing.")
def generate_album_insights(df):
st.header("Album & Label Insights")
tab1, tab2 = st.tabs(["Top Labels", "Album Popularity"])
with tab1:
st.markdown("<span style='color:blue'>**Top Record Labels**</span>: Identifies labels with <span style='color:red'>blue</span> bars.", unsafe_allow_html=True)
if 'Label' in df.columns:
top_labels = df['Label'].value_counts().nlargest(10).reset_index()
fig9 = px.bar(top_labels, x='Label', y='count',
title='Top Record Labels by Song Count', color_discrete_sequence=['blue'])
fig9.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig9)
else:
st.error("Cannot plot: 'Label' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Album Popularity**</span>: Shows albums with <span style='color:red'>red</span> bubbles.", unsafe_allow_html=True)
if 'Album Name' in df.columns and 'Popularity' in df.columns:
album_pop = df.groupby('Album Name')['Popularity'].agg(
['mean', 'count']).reset_index()
fig10 = px.scatter(album_pop, x='count', y='mean', size='mean', hover_data=[
'Album Name'], title='Albums: Song Count vs Average Popularity', color_discrete_sequence=['red'])
fig10.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig10)
else:
st.error("Cannot plot: 'Album Name' or 'Popularity' column missing.")
def generate_tempo_mood(df):
st.header("Tempo & Mood Analysis")
tab1, tab2 = st.tabs(["Tempo Trends", "Mood Scatter"])
with tab1:
st.markdown("<span style='color:blue'>**Tempo Trends**</span>: Tracks changes with <span style='color:red'>orange</span> line.", unsafe_allow_html=True)
if 'Year' in df.columns and 'Tempo' in df.columns:
tempo_by_year = df.groupby('Year')['Tempo'].mean().reset_index()
fig11 = px.line(tempo_by_year, x='Year', y='Tempo',
title='Average Tempo Over Time', color_discrete_sequence=['orange'])
fig11.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig11)
else:
st.error("Cannot plot: 'Year' or 'Tempo' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Valence vs Energy**</span>: Groups mood with <span style='color:red'>purple</span> points.", unsafe_allow_html=True)
if 'Valence' in df.columns and 'Energy' in df.columns:
fig12 = px.scatter(df, x='Valence', y='Energy', title='Valence vs Energy', hover_data=[
'Track Name'], color_discrete_sequence=['purple'])
fig12.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig12)
else:
st.error("Cannot plot: 'Valence' or 'Energy' column missing.")
def generate_top_artists_songs(df):
st.header("Top Artists and Songs")
tab1, tab2 = st.tabs(["Top Artists", "Top Songs"])
with tab1:
st.markdown("<span style='color:blue'>**Most Featured Artists**</span>: Shows artists with <span style='color:red'>green</span> bars.", unsafe_allow_html=True)
if 'Artist Name(s)' in df.columns:
top_artists = df['Artist Name(s)'].value_counts().nlargest(
10).reset_index()
fig13 = px.bar(top_artists, x='Artist Name(s)', y='count',
title='Most Featured Artists', color_discrete_sequence=['green'])
fig13.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig13)
else:
st.error("Cannot plot: 'Artist Name(s)' column missing.")
with tab2:
st.markdown(
"<span style='color:blue'>**Top 10 Songs**</span>: Lists songs with <span style='color:red'>blue</span> bars.", unsafe_allow_html=True)
if 'Track Name' in df.columns and 'Popularity' in df.columns:
top_songs = df.nlargest(10, 'Popularity')[
['Track Name', 'Popularity']]
fig14 = px.bar(top_songs, y='Track Name', x='Popularity', orientation='h',
title='Top 10 Songs by Popularity', color_discrete_sequence=['blue'])
fig14.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig14)
else:
st.error("Cannot plot: 'Track Name' or 'Popularity' column missing.")
def generate_album_release_trends(df):
st.header("Album Release Trends")
tab1, tab2 = st.tabs(["Albums per Year", "Artist-Year Heatmap"])
with tab1:
st.markdown("<span style='color:blue'>**Albums per Year**</span>: Tracks releases with <span style='color:red'>purple</span> line.", unsafe_allow_html=True)
if 'Year' in df.columns:
albums_per_year = df['Year'].value_counts(
).sort_index().reset_index()
fig15 = px.line(albums_per_year, x='Year', y='count',
title='Number of Albums Released per Year', color_discrete_sequence=['purple'])
fig15.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig15)
else:
st.error("Cannot plot: 'Year' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Songs by Artists and Years**</span>: Visualizes with <span style='color:red'>heatmap colors</span>.", unsafe_allow_html=True)
if 'Artist Name(s)' in df.columns and 'Year' in df.columns:
artist_year = df.groupby(
['Artist Name(s)', 'Year']).size().unstack().fillna(0)
fig16 = px.imshow(
artist_year, title='Songs Released by Artists Across Years', color_continuous_scale='Viridis')
fig16.update_layout(width=800, height=400)
st.plotly_chart(fig16)
else:
st.error("Cannot plot: 'Artist Name(s)' or 'Year' column missing.")
def generate_duration_analysis(df):
st.header("Track Duration Analysis")
tab1, tab2 = st.tabs(["Distribution", "By Decade"])
with tab1:
st.markdown("<span style='color:blue'>**Track Duration Distribution**</span>: Shows lengths with <span style='color:red'>orange</span> bars.", unsafe_allow_html=True)
if 'Track Duration (ms)' in df.columns:
fig17 = px.histogram(df, x='Track Duration (ms)',
title='Distribution of Track Durations', color_discrete_sequence=['orange'])
fig17.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig17)
else:
st.error("Cannot plot: 'Track Duration (ms)' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Duration by Decade**</span>: Compares with <span style='color:red'>green</span> boxes.", unsafe_allow_html=True)
if 'Decade' in df.columns and 'Track Duration (ms)' in df.columns:
fig18 = px.box(df, x='Decade', y='Track Duration (ms)',
title='Track Duration by Decade', color_discrete_sequence=['green'])
fig18.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig18)
else:
st.error(
"Cannot plot: 'Decade' or 'Track Duration (ms)' column missing.")
def generate_streaming_insights(df):
st.header("Streaming and Engagement Insights")
tab1, tab2 = st.tabs(["Popularity vs Duration", "Time Signature"])
with tab1:
st.markdown("<span style='color:blue'>**Popularity vs Duration**</span>: Explores trends with <span style='color:red'>blue</span> scatter.", unsafe_allow_html=True)
if 'Track Duration (ms)' in df.columns and 'Popularity' in df.columns:
fig19 = px.scatter(df, x='Track Duration (ms)', y='Popularity',
title='Popularity vs Track Duration', color_discrete_sequence=['blue'])
fig19.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig19)
else:
st.error(
"Cannot plot: 'Track Duration (ms)' or 'Popularity' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Popularity by Time Signature**</span>: Compares with <span style='color:red'>purple</span> bars.", unsafe_allow_html=True)
if 'Time Signature' in df.columns and 'Popularity' in df.columns:
pop_by_time = df.groupby('Time Signature')[
'Popularity'].mean().reset_index()
fig20 = px.bar(pop_by_time, x='Time Signature', y='Popularity',
title='Average Popularity by Time Signature', color_discrete_sequence=['purple'])
fig20.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig20)
else:
st.error(
"Cannot plot: 'Time Signature' or 'Popularity' column missing.")
def generate_feature_comparisons(df):
st.header("Feature Comparisons Across Decades")
tab1, tab2 = st.tabs(["Feature Comparison", "Loudness Trends"])
with tab1:
st.markdown("<span style='color:blue'>**Feature Comparison**</span>: Compares features with <span style='color:red'>multi-colored</span> bars.", unsafe_allow_html=True)
if 'Decade' in df.columns:
features_by_decade = df.groupby(
'Decade')[['Danceability', 'Energy', 'Valence']].mean().reset_index()
fig21 = px.bar(features_by_decade.melt(id_vars='Decade'), x='Decade', y='value', color='variable',
barmode='group', title='Feature Comparison by Decade', color_discrete_sequence=px.colors.qualitative.Pastel)
fig21.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig21)
else:
st.error("Cannot plot: 'Decade' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Loudness Over Time**</span>: Tracks with <span style='color:red'>green</span> line.", unsafe_allow_html=True)
if 'Year' in df.columns and 'Loudness' in df.columns:
loudness_by_year = df.groupby(
'Year')['Loudness'].mean().reset_index()
fig22 = px.line(loudness_by_year, x='Year', y='Loudness',
title='Average Loudness Over Time', color_discrete_sequence=['green'])
fig22.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig22)
else:
st.error("Cannot plot: 'Year' or 'Loudness' column missing.")
def generate_network_analysis(df):
st.header("Network Analysis")
tab1, tab2 = st.tabs(["Artist Collaborations", "Genre Crossover"])
with tab1:
st.markdown("<span style='color:blue'>**Artist Collaborations**</span>: Visualizes connections with <span style='color:red'>interactive red nodes</span>. Hover for details.", unsafe_allow_html=True)
if 'Artist Name(s)' in df.columns:
# Filter out non-string values and handle missing data
valid_artists = df['Artist Name(s)'].dropna().astype(str)
G = nx.Graph()
for artists in valid_artists:
artists_list = [a.strip() for a in artists.split(
',') if a.strip()] # Split and clean
if len(artists_list) > 1: # Check length of list
for a1, a2 in combinations(artists_list, 2):
G.add_edge(a1, a2)
if G.number_of_nodes() > 0:
# Convert to Plotly format
# Use spring layout for better spacing
pos = nx.spring_layout(G)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
node_x = [pos[node][0] for node in G.nodes()]
node_y = [pos[node][1] for node in G.nodes()]
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
hoverinfo='text',
marker=dict(size=10, color='red'),
text=list(G.nodes()),
textposition="top center")
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title='Artist Collaborations',
showlegend=False,
hovermode='closest',
margin=dict(b=0, l=0, r=0, t=40),
width=800, height=600))
st.plotly_chart(fig)
else:
st.warning("No artist collaborations to display.")
else:
st.error("Cannot plot: 'Artist Name(s)' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Genre Crossover**</span>: Placeholder with <span style='color:red'>future multi-color</span> potential.", unsafe_allow_html=True)
st.write("To implement, install `holoviews` and use the following code:")
st.code("""
import holoviews as hv
hv.extension('bokeh')
genre_pairs = df.explode('Genres')[['Genres']].merge(df.explode('Genres')[['Genres']], how='cross')
chord_data = genre_pairs.groupby(['Genres_x', 'Genres_y']).size().reset_index(name='value')
chord = hv.Chord(chord_data).opts(title="Genre Crossover")
st.write(hv.render(chord, backend='bokeh'))
""")
|