File size: 12,752 Bytes
b77a2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9b8a4
 
 
 
b77a2d3
 
 
 
 
 
fabd612
b77a2d3
 
 
2b9b8a4
b77a2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9b8a4
b77a2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9b8a4
 
 
 
b77a2d3
 
 
 
 
 
 
 
 
 
 
 
 
2b9b8a4
b77a2d3
2b9b8a4
 
 
 
b77a2d3
2b9b8a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b77a2d3
 
 
 
 
 
 
 
 
 
2b9b8a4
b77a2d3
2b9b8a4
 
 
b77a2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9b8a4
 
 
 
 
 
 
 
 
 
 
 
b77a2d3
 
 
 
 
 
 
 
 
2b9b8a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b77a2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9b8a4
b77a2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9b8a4
 
 
 
b77a2d3
 
2b9b8a4
 
 
 
 
b77a2d3
2b9b8a4
b77a2d3
2b9b8a4
b77a2d3
2b9b8a4
 
 
 
 
b77a2d3
2b9b8a4
b77a2d3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import json
import logging
import os
import shutil
import sys
import uuid
from json import JSONDecodeError
from pathlib import Path

import pandas as pd
import pinecone
import streamlit as st
from annotated_text import annotation
from haystack import Document
from haystack.document_stores import PineconeDocumentStore
from haystack.nodes import (
    DocxToTextConverter,
    EmbeddingRetriever,
    FARMReader,
    FileTypeClassifier,
    PDFToTextConverter,
    PreProcessor,
    TextConverter,
)
from haystack.pipelines import ExtractiveQAPipeline, Pipeline
from markdown import markdown
from sentence_transformers import SentenceTransformer

import openai

# get API key from top-right dropdown on OpenAI website
openai.api_key = st.secrets["OPENAI_API_KEY"]
index_name = "qa_demo"


# connect to pinecone environment
pinecone.init(
    api_key=st.secrets["pinecone_apikey"],
    environment="us-east1-gcp"
)
index_name = "qa-demo"

embed_model = "text-embedding-ada-002"
preprocessor = PreProcessor(
    clean_empty_lines=True,
    clean_whitespace=True,
    clean_header_footer=False,
    split_by="word",
    split_length=100,
    split_respect_sentence_boundary=True
)
file_type_classifier = FileTypeClassifier()
text_converter = TextConverter()
pdf_converter = PDFToTextConverter()
docx_converter = DocxToTextConverter()

# check if the abstractive-question-answering index exists
if index_name not in pinecone.list_indexes():
    # create the index if it does not exist
    pinecone.create_index(
        index_name,
        dimension=1536,
        metric="cosine"
    )

# connect to abstractive-question-answering index we created
index = pinecone.Index(index_name)

FILE_UPLOAD_PATH= "./data/uploads/"
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
# @st.cache
def create_doc_store():
    document_store = PineconeDocumentStore(
        api_key= st.secrets["pinecone_apikey"],
        index=index_name,
        similarity="cosine",
        embedding_dim=768,
        metadata_config={
            'indexed': ['filename']
        }
    )
    return document_store

# @st.cache
# def create_pipe(document_store):
    # retriever = EmbeddingRetriever(
    # document_store=document_store,
    # embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
    # model_format="sentence_transformers",
    # )
    # reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
    # pipe = ExtractiveQAPipeline(reader, retriever)
    # return pipe
limit = 3750

def retrieve(query):
    res = openai.Embedding.create(
        input=[query],
        engine=embed_model
    )

    # retrieve from Pinecone
    xq = res['data'][0]['embedding']

    # get relevant contexts
    res = index.query(xq, top_k=3, include_metadata=True)
    contexts = [
        x['metadata']['text'] for x in res['matches']
    ]

    # build our prompt with the retrieved contexts included
    prompt_start = (
        "Answer the question based on the context below.\n\n"+
        "Context:\n"
    )
    prompt_end = (
        f"\n\nQuestion: {query}\nAnswer:"
    )
    # append contexts until hitting limit
    for i in range(1, len(contexts)):
        if len("\n\n---\n\n".join(contexts[:i])) >= limit:
            prompt = (
                prompt_start +
                "\n\n---\n\n".join(contexts[:i-1]) +
                prompt_end
            )
            break
        elif i == len(contexts)-1:
            prompt = (
                prompt_start +
                "\n\n---\n\n".join(contexts) +
                prompt_end
            )
    return prompt, contexts


# first let's make it simpler to get answers
def complete(prompt):
    # query text-davinci-003
    res = openai.Completion.create(
        engine='text-davinci-003',
        prompt=prompt,
        temperature=0,
        max_tokens=400,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
        stop=None
    )
    return res['choices'][0]['text'].strip()
    
def query(pipe, question, top_k_reader, top_k_retriever):
    # first we retrieve relevant items from Pinecone
    query_with_contexts, contexts = retrieve(question)
    return complete(query_with_contexts), contexts

document_store = create_doc_store()
# pipe = create_pipe(document_store)
retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model=retriever_model,
model_format="sentence_transformers",
)
# load the retriever model from huggingface model hub
# sentence_encoder = SentenceTransformer(retriever_model)

# reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
# pipe = ExtractiveQAPipeline(reader, retriever)
# now query text-davinci-003 WITHOUT context

indexing_pipeline_with_classification = Pipeline()
indexing_pipeline_with_classification.add_node(
    component=file_type_classifier, name="FileTypeClassifier", inputs=["File"]
)
indexing_pipeline_with_classification.add_node(
    component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"]
)
indexing_pipeline_with_classification.add_node(
    component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"]
)
indexing_pipeline_with_classification.add_node(
    component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"]
)
indexing_pipeline_with_classification.add_node(
    component=preprocessor,
    name="Preprocessor",
    inputs=["TextConverter", "PdfConverter", "DocxConverter"],
)

def set_state_if_absent(key, value):
    if key not in st.session_state:
        st.session_state[key] = value

# Adjust to a question that you would like users to see in the search bar when they load the UI:
DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics.")
DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "7% more remote workers have been at their current organization for 5 years or fewer")

# Sliders
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))


st.set_page_config(page_title="Haystack Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png")

# Persistent state
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP)
set_state_if_absent("results", None)


# Small callback to reset the interface in case the text of the question changes
def reset_results(*args):
    st.session_state.answer = None
    st.session_state.results = None
    st.session_state.raw_json = None

# Title
st.write("# GPT3 and Langchain Demo")
st.markdown(
    """
This demo takes its data from the documents uploaded to the Pinecone index through this app. \n
Ask any question from the uploaded documents and Pinecone will retrieve the context for answers and GPT3 will answer them using the retrieved context. \n
*Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you.
""",
    unsafe_allow_html=True,
)

# Sidebar
st.sidebar.header("Options")
st.sidebar.write("## File Upload:")
data_files = st.sidebar.file_uploader(
    "upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
)
ALL_FILES = []
META_DATA = []
for data_file in data_files:
    # Upload file
    if data_file:
        file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}"
        with open(file_path, "wb") as f:
            f.write(data_file.getbuffer())
        ALL_FILES.append(file_path)
        st.sidebar.write(str(data_file.name) + "    โœ… ")
        META_DATA.append({"filename":data_file.name})
        

if len(ALL_FILES) > 0:
    # document_store.update_embeddings(retriever, update_existing_embeddings=False)
    docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"]
    index_name = "qa_demo"
    # we will use batches of 64
    batch_size = 64
    # docs  = docs['documents']
    with st.spinner(
            "๐Ÿง     Performing indexing of uplaoded documents... \n "
        ):
        for i in range(0, len(docs), batch_size):
            # find end of batch
            i_end = min(i+batch_size, len(docs))
            # extract batch
            batch = [doc.content for doc in docs[i:i_end]]
            # generate embeddings for batch
            try:
                res = openai.Embedding.create(input=texts, engine=embed_model)
            except:
                done = False
                while not done:
                    sleep(5)
                    try:
                        res = openai.Embedding.create(input=texts, engine=embed_model)
                        done = True
                    except:
                        pass
            embeds = [record['embedding'] for record in res['data']]
            # get metadata
            meta = [doc.meta for doc in docs[i:i_end]]
            # create unique IDs
            ids = [doc.id for doc in docs[i:i_end]]
            # add all to upsert list
            to_upsert = list(zip(ids, emb, meta))
            # upsert/insert these records to pinecone
            _ = index.upsert(vectors=to_upsert)
    
# top_k_reader = st.sidebar.slider(
#     "Max. number of answers",
#     min_value=1,
#     max_value=10,
#     value=DEFAULT_NUMBER_OF_ANSWERS,
#     step=1,
#     on_change=reset_results,
# )
# top_k_retriever = st.sidebar.slider(
#     "Max. number of documents from retriever",
#     min_value=1,
#     max_value=10,
#     value=DEFAULT_DOCS_FROM_RETRIEVER,
#     step=1,
#     on_change=reset_results,
# )
# data_files = st.file_uploader(
#         "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden"
#     )
# for data_file in data_files:
#     # Upload file
#     if data_file:
#         raw_json = upload_doc(data_file)

question = st.text_input(
        value=st.session_state.question,
        max_chars=100,
        on_change=reset_results,
        label="question",
        label_visibility="hidden",
    )
col1, col2 = st.columns(2)
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)

# Run button
run_pressed = col1.button("Run")
if run_pressed:

    run_query = (
        run_pressed or question != st.session_state.question
    )
    # Get results for query
    if run_query and question:
        reset_results()
        st.session_state.question = question

        with st.spinner(
            "๐Ÿง  &nbsp;&nbsp; Performing neural search on documents... \n "
        ):
            try:
                st.session_state.results  = query(
                    pipe, question, top_k_reader=None, top_k_retriever=None
                )
            except JSONDecodeError as je:
                st.error("๐Ÿ‘“ &nbsp;&nbsp; An error occurred reading the results. Is the document store working?")
            except Exception as e:
                logging.exception(e)
                if "The server is busy processing requests" in str(e) or "503" in str(e):
                    st.error("๐Ÿง‘โ€๐ŸŒพ &nbsp;&nbsp; All our workers are busy! Try again later.")
                else:
                    st.error(f"๐Ÿž &nbsp;&nbsp; An error occurred during the request. {str(e)}")


if st.session_state.results:

    st.write("## Results:")

    for result,contexts in st.session_state.results:
        # answer, context = result.answer, result.context
        # start_idx = context.find(answer)
        # end_idx = start_idx + len(answer)
        # Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
        try:
            # source = f"[{result.meta['Title']}]({result.meta['link']})"
            # st.write(
            # markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
            # unsafe_allow_html=True,
            #  )
            st.write(
            markdown(f"Answer: {result} \n Extracted from context {contexts}"),
            unsafe_allow_html=True,
            )
        except:
            # filename = result.meta.get('filename', "")
            # st.write(
            # markdown(f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
            # unsafe_allow_html=True,
            # )
            st.write(
            markdown(f"Answer: {result}"),
            unsafe_allow_html=True,
            )