File size: 7,469 Bytes
ad78747
 
 
 
 
 
 
 
 
 
 
 
 
3805a61
ad78747
 
 
 
 
 
 
3805a61
ad78747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805a61
ad78747
3805a61
 
 
 
 
 
 
 
3c03f61
 
 
3805a61
3c03f61
 
 
 
 
3805a61
 
 
 
 
 
 
ad78747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805a61
ad78747
 
 
3c03f61
 
ad78747
 
 
 
 
 
 
 
 
 
 
3805a61
 
 
 
 
 
 
 
 
 
 
 
 
 
ad78747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805a61
ad78747
3c03f61
 
 
 
ad78747
 
3805a61
 
 
 
 
 
3c03f61
 
3805a61
 
 
 
 
 
ad78747
 
 
 
 
 
 
 
 
 
 
 
 
3805a61
ad78747
 
 
 
 
 
 
 
 
3805a61
ad78747
 
 
 
 
 
 
 
3805a61
ad78747
3805a61
ad78747
 
 
 
 
 
 
 
3805a61
ad78747
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""
    Get data and adapt it for training
    -----------
    - nettoyage de l'encodage
    - Ajout de token <START> et <END>
    TO DO :
    - Nettoyage des contractions
    - enlever les \xad
    - enlever ponctuation et () []
    - s'occuper des noms propres (mots commençant par une majuscule qui se suivent)
    Création d'un Vectoriserà partir du vocabulaire :

"""
import pickle
import string
from collections import Counter

import pandas as pd
import torch


class Data(torch.utils.data.Dataset):
    """
    A class used to get data from file
    ...

    Attributes
    ----------
    path : str
        the path to the file containing the data

    Methods
    -------
    open()
        open the jsonl file with pandas
    clean_data(text_type)
        clean the data got by opening the file and adds <start> and
        <end> tokens depending on the text_type
    get_words()
        get the dataset vocabulary
    make_dataset()
        create a dataset with cleaned data
    """

    def __init__(self, path: str, transform=None) -> None:
        self.path = path
        self.data = pd.read_json(path_or_buf=self.path, lines=True)
        self.transform = transform

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        row = self.data.iloc[idx]
        text = row["text"].translate(
            str.maketrans(
                "", "", string.punctuation)).split()
        summary = (
            row["summary"].translate(
                str.maketrans(
                    "",
                    "",
                    string.punctuation)).split())
        summary = ["<start>", *summary, "<end>"]
        sample = {"text": text, "summary": summary}

        if self.transform:
            sample = self.transform(sample)

        return sample

    def open(self) -> pd.DataFrame:
        """
        Open the file containing the data
        """
        return pd.read_json(path_or_buf=self.path, lines=True)

    def clean_data(self, text_type: str) -> list:
        """
        Clean data from encoding error, punctuation, etc...
        To Do :
        #nettoyer les données

        Parameters
        ----------
        text_type : str
            allow to differenciate between 'text' and 'summary'
            to add <start> and <end> tokens to summaries

        Returns
        ----------
        list of list
            list of tokenised texts

        """
        dataset = self.open()

        texts = dataset[text_type]
        texts = texts.str.encode("cp1252", "ignore")
        texts = texts.str.decode("utf-8", "ignore")

        tokenized_texts = []
        # - Nettoyage des contractions
        # - enlever les \xad
        # text.translate(str.maketrans('', '', string.punctuation))
        # - enlever ponctuation et () []
        # - s'occuper des noms propres (mots commençant par une majuscule qui se suivent)
        for text in texts:
            text = text.translate(str.maketrans("", "", string.punctuation))
            text = text.split()
            tokenized_texts.append(text)

        if text_type == "summary":
            return [["<start>", *summary, "<end>"]
                    for summary in tokenized_texts]
        return tokenized_texts

    def get_words(self) -> list:
        """
        Create a dictionnary of the data vocabulary
        """
        texts, summaries = self.clean_data("text"), self.clean_data("summary")
        text_words = [word for text in texts for word in text]
        summary_words = [word for text in summaries for word in text]
        return text_words + summary_words


def pad_collate(data):
    text_batch = [element[0] for element in data]
    summary_batch = [element[1] for element in data]
    max_len = max([len(element) for element in summary_batch + text_batch])
    text_batch = [
        torch.nn.functional.pad(element, (0, max_len - len(element)), value=-100)
        for element in text_batch
    ]
    summary_batch = [
        torch.nn.functional.pad(element, (0, max_len - len(element)), value=-100)
        for element in summary_batch
    ]
    return text_batch, summary_batch


class Vectoriser:
    """
    A class used to vectorise data
    ...

    Attributes
    ----------
    vocab : list
        list of the vocab

    Methods
    -------
    encode(tokens)
        transforms a list of tokens to their corresponding idx
        in form of troch tensor
    decode(word_idx_tensor)
        converts a tensor to a list of tokens
    vectorize(row)
        encode an entire row from the dataset
    """

    def __init__(self, vocab=None) -> None:
        self.vocab = vocab
        self.word_count = Counter(word.lower().strip(",.\\-")
                                  for word in self.vocab)
        self.idx_to_token = sorted(
            [t for t, c in self.word_count.items() if c > 1])
        self.token_to_idx = {t: i for i, t in enumerate(self.idx_to_token)}

    def load(self, path):
        with open(path, "rb") as file:
            self.vocab = pickle.load(file)
            self.word_count = Counter(
                word.lower().strip(",.\\-") for word in self.vocab
            )
            self.idx_to_token = sorted(
                [t for t, c in self.word_count.items() if c > 1])
            self.token_to_idx = {t: i for i, t in enumerate(self.idx_to_token)}

    def save(self, path):
        with open(path, "wb") as file:
            pickle.dump(self.vocab, file)

    def encode(self, tokens) -> torch.tensor:
        """
        Encode une phrase selon les mots qu'elle contient
        selon les mots contenus dans le dictionnaire.
        À NOTER :
        Si un mot n'est pas contenu dans le dictionnaire,
        associe un index fixe au mot qui sera ignoré au décodage.
        ---------
        :params: tokens : list
            les mots de la phrase sous forme de liste
        :return: words_idx : tensor
            Un tensor contenant les index des mots de la phrase
        """
        if isinstance(tokens, list):
            words_idx = torch.tensor(
                [
                    self.token_to_idx.get(t.lower(), len(self.token_to_idx))
                    for t in tokens
                ],
                dtype=torch.long,
            )

        # Permet d'encoder mots par mots
        elif isinstance(tokens, str):
            words_idx = torch.tensor(self.token_to_idx.get(tokens.lower()))

        return words_idx

    def decode(self, words_idx_tensor) -> list:
        """
        Decode une phrase selon le procédé inverse que la fonction encode
        """

        idxs = words_idx_tensor.tolist()
        if isinstance(idxs, int):
            words = [self.idx_to_token[idxs]]
        else:
            words = []
            for idx in idxs:
                if idx != len(self.idx_to_token):
                    words.append(self.idx_to_token[idx])
        return words

    def __call__(self, row) -> torch.tensor:
        """
        Encode les données d'une ligne du dataframe
        ----------
        :params: row : dataframe
            une ligne du dataframe (un coupe texte-résumé)
        :returns: text_idx : tensor
            le tensor correspondant aux mots du textes
        :returns: summary_idx: tensor
            le tensr correspondant aux mots du résumé
        """
        text_idx = self.encode(row["text"])
        summary_idx = self.encode(row["summary"])
        return (text_idx, summary_idx)