File size: 8,365 Bytes
41508f8
4b472fe
41508f8
4b472fe
41508f8
5925e5f
4b472fe
5925e5f
4b472fe
 
5925e5f
4b472fe
 
 
41508f8
 
5925e5f
4b472fe
41508f8
 
 
4b472fe
41508f8
 
5925e5f
 
4b472fe
 
 
41508f8
4b472fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41508f8
4b472fe
 
41508f8
 
 
4b472fe
5925e5f
41508f8
 
5925e5f
41508f8
5925e5f
41508f8
 
5925e5f
41508f8
4fa4fe8
 
41508f8
 
5925e5f
 
41508f8
 
5925e5f
 
 
4fa4fe8
 
4b472fe
5925e5f
4b472fe
 
5925e5f
4b472fe
 
41508f8
 
4b472fe
 
 
 
 
 
 
 
 
5925e5f
 
 
 
 
 
 
4b472fe
 
41508f8
 
5925e5f
 
 
 
4b472fe
 
 
 
41508f8
 
 
5925e5f
 
 
41508f8
5925e5f
41508f8
4b472fe
5925e5f
4b472fe
41508f8
 
 
4fa4fe8
5925e5f
 
41508f8
5925e5f
4b472fe
5925e5f
 
41508f8
 
4b472fe
 
 
41508f8
 
5925e5f
 
4fa4fe8
41508f8
 
4b472fe
035b2cc
4b472fe
035b2cc
3c03f61
035b2cc
41508f8
 
 
5925e5f
 
4fa4fe8
5925e5f
4fa4fe8
cd518e1
 
 
4b472fe
41508f8
4b472fe
5925e5f
 
 
 
cd518e1
41508f8
4b472fe
41508f8
5925e5f
 
4fa4fe8
4b472fe
5925e5f
 
4b472fe
5925e5f
4b472fe
 
41508f8
5925e5f
 
4fa4fe8
41508f8
5925e5f
 
 
 
 
 
 
 
 
 
 
 
41508f8
5925e5f
 
 
41508f8
 
4fa4fe8
 
41508f8
5925e5f
 
 
41508f8
4b472fe
 
5925e5f
41508f8
 
 
 
4fa4fe8
5925e5f
 
 
 
 
 
 
4b472fe
 
 
5925e5f
41508f8
5925e5f
41508f8
4fa4fe8
5925e5f
41508f8
5925e5f
41508f8
5925e5f
 
4b472fe
4fa4fe8
41508f8
cd518e1
5925e5f
41508f8
4b472fe
41508f8
 
5925e5f
41508f8
 
 
 
5925e5f
41508f8
5925e5f
41508f8
5925e5f
41508f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import re
import string

import contractions
import datasets
import evaluate
import pandas as pd
import torch
from datasets import Dataset
from tqdm import tqdm
from transformers import (AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer,
                          DataCollatorForSeq2Seq, Seq2SeqTrainer,
                          Seq2SeqTrainingArguments)


def clean_text(texts):
    """This fonction makes clean text for the future use"""
    texts = texts.lower()
    texts = contractions.fix(texts)
    texts = texts.translate(str.maketrans("", "", string.punctuation))
    texts = re.sub(r"\n", " ", texts)
    return texts


def datasetmaker(path=str):
    """This fonction take the jsonl file, read it to a dataframe,
    remove the colums not needed for the task and turn it into a file type Dataset
    """
    data = pd.read_json(path, lines=True)
    df = data.drop(
        [
            "url",
            "archive",
            "title",
            "date",
            "compression",
            "coverage",
            "density",
            "compression_bin",
            "coverage_bin",
            "density_bin",
        ],
        axis=1,
    )
    tqdm.pandas()
    df["text"] = df.text.apply(lambda texts: clean_text(texts))
    df["summary"] = df.summary.apply(lambda summary: clean_text(summary))
    dataset = Dataset.from_dict(df)
    return dataset


# voir si le model par hasard esr déjà bien

# test_text = dataset['text'][0]
# pipe = pipeline('summarization', model = model_ckpt)
# pipe_out = pipe(test_text)
# print(pipe_out[0]['summary_text'].replace('.<n>', '.\n'))
# print(dataset['summary'][0])


def generate_batch_sized_chunks(list_elements, batch_size):
    """this fonction split the dataset into smaller batches
    that we can process simultaneously
    Yield successive batch-sized chunks from list_of_elements."""
    for i in range(0, len(list_elements), batch_size):
        yield list_elements[i: i + batch_size]


def calculate_metric(dataset, metric, model, tokenizer,
                     batch_size, device,
                     column_text='text',
                     column_summary='summary'):
    """this fonction evaluate the model with metric rouge and
    print a table of rouge scores rouge1', 'rouge2', 'rougeL', 'rougeLsum'"""

    article_batches = list(
        str(generate_batch_sized_chunks(dataset[column_text], batch_size))
    )
    target_batches = list(
        str(generate_batch_sized_chunks(dataset[column_summary], batch_size))
    )

    for article_batch, target_batch in tqdm(
        zip(article_batches, target_batches), total=len(article_batches)
    ):
        inputs = tokenizer(
            article_batch,
            max_length=1024,
            truncation=True,
            padding="max_length",
            return_tensors="pt",
        )
        # parameter for length penalty ensures that the model does not
        # generate sequences that are too long.
        summaries = model.generate(
            input_ids=inputs["input_ids"].to(device),
            attention_mask=inputs["attention_mask"].to(device),
            length_penalty=0.8,
            num_beams=8,
            max_length=128,
        )

        # Décode les textes
        # renplacer les tokens, ajouter des textes décodés avec les rédéfences
        # vers la métrique.
        decoded_summaries = [
            tokenizer.decode(
                s, skip_special_tokens=True, clean_up_tokenization_spaces=True
            )
            for s in summaries
        ]

        decoded_summaries = [d.replace("", " ") for d in decoded_summaries]

        metric.add_batch(
            predictions=decoded_summaries,
            references=target_batch)

    # compute et return les ROUGE scores.
    results = metric.compute()
    rouge_names = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
    rouge_dict = dict((rn, results[rn]) for rn in rouge_names)
    return pd.DataFrame(rouge_dict, index=["T5"])


def convert_ex_to_features(example_batch):
    """this fonction takes for input a list of inputExemples and convert to InputFeatures"""
    input_encodings = tokenizer(example_batch['text'],
                                max_length=1024, truncation=True)

    labels = tokenizer(
        example_batch["summary"],
        max_length=128,
        truncation=True)

    return {
        "input_ids": input_encodings["input_ids"],
        "attention_mask": input_encodings["attention_mask"],
        "labels": labels["input_ids"],
    }


if __name__ == '__main__':
    # réalisation des datasets propres
    train_dataset = datasetmaker('data/train_extract.jsonl')


<<<<<<< HEAD
    dev_dataset = datasetmaker("data/dev_extract.jsonl")
=======
    test_dataset = datasetmaker("data/test_extract.jsonl")
>>>>>>> 4e410f4bdcd6de645d9e73bb207d8a9170dfc3e1

    test_dataset = datasetmaker('data/test_extract.jsonl')

    dataset = datasets.DatasetDict({'train': train_dataset,
                                    'dev': dev_dataset, 'test': test_dataset})
    # définition de device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # faire appel au model à entrainer

    hf_token = "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"
    tokenizer = AutoTokenizer.from_pretrained('google/mt5-small', use_auth_token=hf_token )

    mt5_config = AutoConfig.from_pretrained(
        "google/mt5-small",
        max_length=128,
        length_penalty=0.6,
        no_repeat_ngram_size=2,
        num_beams=15,
        use_auth_token=hf_token
    )

    model = (AutoModelForSeq2SeqLM
             .from_pretrained('google/mt5-small', config=mt5_config)
             .to(device))
    #convertir les exemples en inputFeatures

    dataset_pt = dataset.map(
        convert_ex_to_features,
        remove_columns=["summary", "text"],
        batched=True,
        batch_size=128,
    )

    data_collator = DataCollatorForSeq2Seq(
        tokenizer, model=model, return_tensors="pt")
    #définir les paramètres d'entrainement(fine tuning)
    training_args = Seq2SeqTrainingArguments(
        output_dir="t5_summary",
        log_level="error",
        num_train_epochs=10,
        learning_rate=5e-4,
        warmup_steps=0,
        optim="adafactor",
        weight_decay=0.01,
        per_device_train_batch_size=2,
        per_device_eval_batch_size=1,
        gradient_accumulation_steps=16,
        evaluation_strategy="steps",
        eval_steps=100,
        predict_with_generate=True,
        generation_max_length=128,
        save_steps=500,
        logging_steps=10,
        # push_to_hub = True
    )
    #donner au entraineur(trainer) le model
    # et les éléments nécessaire pour l'entrainement
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        # compute_metrics = calculate_metric,
        train_dataset=dataset_pt["train"],
        eval_dataset=dataset_pt["dev"].select(range(10)),
        tokenizer=tokenizer,
    )

    trainer.train()
    rouge_metric = evaluate.load("rouge")
    #évluer ensuite le model selon les résultats d'entrainement
    score = calculate_metric(
        test_dataset,
        rouge_metric,
        trainer.model,
        tokenizer,
        batch_size=2,
        device=device,
        column_text="text",
        column_summary="summary",
    )
    print(score)

    # Fine Tuning terminés et à sauvgarder

    # sauvegarder fine-tuned model à local
    os.makedirs("t5_summary", exist_ok=True)
    if hasattr(trainer.model, "module"):
        trainer.model.module.save_pretrained("t5_summary")
    else:
        trainer.model.save_pretrained("t5_summary")
    tokenizer.save_pretrained("t5_summary")

    # faire appel au model en local
    model = (AutoModelForSeq2SeqLM
             .from_pretrained("t5_summary", use_auth_token=hf_token )
             .to(device))


    # mettre en usage : TEST

    # gen_kwargs = {"length_penalty" : 0.8, "num_beams" : 8, "max_length" : 128}
    # sample_text = dataset["test"][0]["text"]
    # reference = dataset["test"][0]["summary"]
    # pipe = pipeline("summarization", model='./summarization_t5')

    # print("Text :")
    # print(sample_text)
    # print("\nReference Summary :")
    # print(reference)
    # print("\nModel Summary :")
    # print(pipe(sample_text, **gen_kwargs)[0]["summary_text"])