Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,585 Bytes
b887ad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import os
import numpy as np
# import cv2
from PIL import Image
from utils import paramUtil
import math
import time
import matplotlib.pyplot as plt
from scipy.ndimage import gaussian_filter
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
MISSING_VALUE = -1
def save_image(image_numpy, image_path):
img_pil = Image.fromarray(image_numpy)
img_pil.save(image_path)
def save_logfile(log_loss, save_path):
with open(save_path, 'wt') as f:
for k, v in log_loss.items():
w_line = k
for digit in v:
w_line += ' %.3f' % digit
f.write(w_line + '\n')
def as_minutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
# def print_current_loss(start_time, niter_state, losses, epoch=None, inner_iter=None):
def print_current_loss(accelerator,start_time, niter_state, losses, epoch=None, inner_iter=None):
def as_minutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def time_since(since, percent):
now = time.time()
s = now - since
es = s / percent
rs = es - s
return '%s (- %s)' % (as_minutes(s), as_minutes(rs))
if epoch is not None:
# print('epoch: %3d niter: %6d inner_iter: %4d' % (epoch, niter_state, inner_iter), end=" ")
accelerator.print('epoch: %3d niter: %6d inner_iter: %4d' % (epoch, niter_state, inner_iter), end=" ")
now = time.time()
message = '%s'%(as_minutes(now - start_time))
for k, v in losses.items():
message += ' %s: %.4f ' % (k, v)
# print(message)
accelerator.print(message)
def compose_gif_img_list(img_list, fp_out, duration):
img, *imgs = [Image.fromarray(np.array(image)) for image in img_list]
img.save(fp=fp_out, format='GIF', append_images=imgs, optimize=False,
save_all=True, loop=0, duration=duration)
def save_images(visuals, image_path):
if not os.path.exists(image_path):
os.makedirs(image_path)
for i, (label, img_numpy) in enumerate(visuals.items()):
img_name = '%d_%s.jpg' % (i, label)
save_path = os.path.join(image_path, img_name)
save_image(img_numpy, save_path)
def save_images_test(visuals, image_path, from_name, to_name):
if not os.path.exists(image_path):
os.makedirs(image_path)
for i, (label, img_numpy) in enumerate(visuals.items()):
img_name = "%s_%s_%s" % (from_name, to_name, label)
save_path = os.path.join(image_path, img_name)
save_image(img_numpy, save_path)
def compose_and_save_img(img_list, save_dir, img_name, col=4, row=1, img_size=(256, 200)):
# print(col, row)
compose_img = compose_image(img_list, col, row, img_size)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
img_path = os.path.join(save_dir, img_name)
# print(img_path)
compose_img.save(img_path)
def compose_image(img_list, col, row, img_size):
to_image = Image.new('RGB', (col * img_size[0], row * img_size[1]))
for y in range(0, row):
for x in range(0, col):
from_img = Image.fromarray(img_list[y * col + x])
# print((x * img_size[0], y*img_size[1],
# (x + 1) * img_size[0], (y + 1) * img_size[1]))
paste_area = (x * img_size[0], y*img_size[1],
(x + 1) * img_size[0], (y + 1) * img_size[1])
to_image.paste(from_img, paste_area)
# to_image[y*img_size[1]:(y + 1) * img_size[1], x * img_size[0] :(x + 1) * img_size[0]] = from_img
return to_image
def list_cut_average(ll, intervals):
if intervals == 1:
return ll
bins = math.ceil(len(ll) * 1.0 / intervals)
ll_new = []
for i in range(bins):
l_low = intervals * i
l_high = l_low + intervals
l_high = l_high if l_high < len(ll) else len(ll)
ll_new.append(np.mean(ll[l_low:l_high]))
return ll_new
def motion_temporal_filter(motion, sigma=1):
motion = motion.reshape(motion.shape[0], -1)
# print(motion.shape)
for i in range(motion.shape[1]):
motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest")
return motion.reshape(motion.shape[0], -1, 3)
|