Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,033 Bytes
b887ad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import sys
import os
import torch
import numpy as np
from os.path import join as pjoin
import utils.paramUtil as paramUtil
from utils.plot_script import *
from utils.utils import *
from utils.motion_process import recover_from_ric
from accelerate.utils import set_seed
from models.gaussian_diffusion import DiffusePipeline
from options.generate_options import GenerateOptions
from utils.model_load import load_model_weights
from motion_loader import get_dataset_loader
from models import build_models
import yaml
from box import Box
def yaml_to_box(yaml_file):
with open(yaml_file, "r") as file:
yaml_data = yaml.safe_load(file)
return Box(yaml_data)
if __name__ == "__main__":
parser = GenerateOptions()
opt = parser.parse()
set_seed(opt.seed)
device_id = opt.gpu_id
device = torch.device("cuda:%d" % device_id if torch.cuda.is_available() else "cpu")
opt.device = device
assert opt.dataset_name == "t2m" or "kit"
# Using a text prompt for generation
if opt.text_prompt != "":
texts = [opt.text_prompt]
opt.num_samples = 1
motion_lens = [opt.motion_length * opt.fps]
# Or using texts (in .txt file) for generation
elif opt.input_text != "":
with open(opt.input_text, "r") as fr:
texts = [line.strip() for line in fr.readlines()]
opt.num_samples = len(texts)
if opt.input_lens != "":
with open(opt.input_lens, "r") as fr:
motion_lens = [int(line.strip()) for line in fr.readlines()]
assert len(texts) == len(
motion_lens
), f"Please ensure that the motion length in {opt.input_lens} corresponds to the text in {opt.input_text}."
else:
motion_lens = [opt.motion_length * opt.fps for _ in range(opt.num_samples)]
# Or usining texts in dataset
else:
gen_datasetloader = get_dataset_loader(
opt, opt.num_samples, mode="hml_gt", split="test"
)
texts, _, motion_lens = next(iter(gen_datasetloader))
# edit mode
if opt.edit_mode:
edit_config = yaml_to_box("options/edit.yaml")
else:
edit_config = yaml_to_box("options/noedit.yaml")
print(edit_config)
ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + ".tar")
checkpoint = torch.load(ckpt_path,map_location={'cuda:0': str(device)})
niter = checkpoint.get('total_it', 0)
# make save dir
out_path = opt.output_dir
if out_path == "":
out_path = pjoin(opt.save_root, "samples_iter{}_seed{}".format(niter, opt.seed))
if opt.text_prompt != "":
out_path += "_" + opt.text_prompt.replace(" ", "_").replace(".", "")
elif opt.input_text != "":
out_path += "_" + os.path.basename(opt.input_text).replace(
".txt", ""
).replace(" ", "_").replace(".", "")
os.makedirs(out_path, exist_ok=True)
# load model
model = build_models(opt, edit_config=edit_config, out_path=out_path)
niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema)
# Create a pipeline for generation in diffusion model framework
pipeline = DiffusePipeline(
opt=opt,
model=model,
diffuser_name=opt.diffuser_name,
device=device,
num_inference_steps=opt.num_inference_steps,
torch_dtype=torch.float16,
)
# generate
pred_motions, _ = pipeline.generate(
texts, torch.LongTensor([int(x) for x in motion_lens])
)
# Convert the generated motion representaion into 3D joint coordinates and save as npy file
npy_dir = pjoin(out_path, "joints_npy")
root_dir = pjoin(out_path, "root_npy")
os.makedirs(npy_dir, exist_ok=True)
os.makedirs(root_dir, exist_ok=True)
print(f"saving results npy file (3d joints) to [{npy_dir}]")
mean = np.load(pjoin(opt.meta_dir, "mean.npy"))
std = np.load(pjoin(opt.meta_dir, "std.npy"))
samples = []
root_list = []
for i, motion in enumerate(pred_motions):
motion = motion.cpu().numpy() * std + mean
np.save(pjoin(npy_dir, f"raw_{i:02}.npy"), motion)
npy_name = f"{i:02}.npy"
# 1. recover 3d joints representation by ik
motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num)
# 2. put on Floor (Y axis)
floor_height = motion.min(dim=0)[0].min(dim=0)[0][1]
motion[:, :, 1] -= floor_height
motion = motion.numpy()
# 3. remove jitter
motion = motion_temporal_filter(motion, sigma=1)
# save root trajectory (Y axis)
root_trajectory = motion[:, 0, :]
root_list.append(root_trajectory)
np.save(pjoin(root_dir, f"root_{i:02}.npy"), root_trajectory)
y = root_trajectory[:, 1]
plt.figure()
plt.plot(y)
plt.legend()
plt.title("Root Joint Trajectory")
plt.xlabel("Frame")
plt.ylabel("Position")
plt.savefig("./root_trajectory_xyz.png")
np.save(pjoin(npy_dir, npy_name), motion)
samples.append(motion)
root_list_res = np.concatenate(root_list, axis=0)
np.save("root_list.npy", root_list_res)
# save the text and length conditions used for this generation
with open(pjoin(out_path, "results.txt"), "w") as fw:
fw.write("\n".join(texts))
with open(pjoin(out_path, "results_lens.txt"), "w") as fw:
fw.write("\n".join([str(l) for l in motion_lens]))
# skeletal animation visualization
print(f"saving motion videos to [{out_path}]...")
for i, title in enumerate(texts):
motion = samples[i]
fname = f"{i:02}.mp4"
kinematic_tree = (
paramUtil.t2m_kinematic_chain
if (opt.dataset_name == "t2m")
else paramUtil.kit_kinematic_chain
)
plot_3d_motion(
pjoin(out_path, fname),
kinematic_tree,
motion,
title=title,
fps=opt.fps,
radius=opt.radius,
)
|