File size: 6,033 Bytes
b887ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import sys
import os
import torch
import numpy as np
from os.path import join as pjoin
import utils.paramUtil as paramUtil
from utils.plot_script import *

from utils.utils import *
from utils.motion_process import recover_from_ric
from accelerate.utils import set_seed
from models.gaussian_diffusion import DiffusePipeline
from options.generate_options import GenerateOptions
from utils.model_load import load_model_weights
from motion_loader import get_dataset_loader
from models import build_models
import yaml
from box import Box


def yaml_to_box(yaml_file):
    with open(yaml_file, "r") as file:
        yaml_data = yaml.safe_load(file)
    return Box(yaml_data)


if __name__ == "__main__":
    parser = GenerateOptions()
    opt = parser.parse()
    set_seed(opt.seed)
    device_id = opt.gpu_id
    device = torch.device("cuda:%d" % device_id if torch.cuda.is_available() else "cpu")
    opt.device = device

    assert opt.dataset_name == "t2m" or "kit"

    # Using a text prompt for generation
    if opt.text_prompt != "":
        texts = [opt.text_prompt]
        opt.num_samples = 1
        motion_lens = [opt.motion_length * opt.fps]
    
    # Or using texts (in .txt file) for generation
    elif opt.input_text != "":
        with open(opt.input_text, "r") as fr:
            texts = [line.strip() for line in fr.readlines()]
        opt.num_samples = len(texts)
        if opt.input_lens != "":
            with open(opt.input_lens, "r") as fr:
                motion_lens = [int(line.strip()) for line in fr.readlines()]
            assert len(texts) == len(
                motion_lens
            ), f"Please ensure that the motion length in {opt.input_lens} corresponds to the text in {opt.input_text}."
        else:
            motion_lens = [opt.motion_length * opt.fps for _ in range(opt.num_samples)]
    
    # Or usining texts in dataset
    else:
        gen_datasetloader = get_dataset_loader(
            opt, opt.num_samples, mode="hml_gt", split="test"
        )
        texts, _, motion_lens = next(iter(gen_datasetloader))

    # edit mode
    if opt.edit_mode:
        edit_config = yaml_to_box("options/edit.yaml")
    else:
        edit_config = yaml_to_box("options/noedit.yaml")
    print(edit_config)

    ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + ".tar")
    checkpoint = torch.load(ckpt_path,map_location={'cuda:0': str(device)})
    niter = checkpoint.get('total_it', 0)
    # make save dir
    out_path = opt.output_dir
    if out_path == "":
        out_path = pjoin(opt.save_root, "samples_iter{}_seed{}".format(niter, opt.seed))
        if opt.text_prompt != "":
            out_path += "_" + opt.text_prompt.replace(" ", "_").replace(".", "")
        elif opt.input_text != "":
            out_path += "_" + os.path.basename(opt.input_text).replace(
                ".txt", ""
            ).replace(" ", "_").replace(".", "")
    os.makedirs(out_path, exist_ok=True)

    # load model
    model = build_models(opt, edit_config=edit_config, out_path=out_path)
    niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema)

    # Create a pipeline for generation in diffusion model framework
    pipeline = DiffusePipeline(
        opt=opt,
        model=model,
        diffuser_name=opt.diffuser_name,
        device=device,
        num_inference_steps=opt.num_inference_steps,
        torch_dtype=torch.float16,
    )

    # generate
    pred_motions, _ = pipeline.generate(
        texts, torch.LongTensor([int(x) for x in motion_lens])
    )

    # Convert the generated motion representaion into 3D joint coordinates and save as npy file
    npy_dir = pjoin(out_path, "joints_npy")
    root_dir = pjoin(out_path, "root_npy")
    os.makedirs(npy_dir, exist_ok=True)
    os.makedirs(root_dir, exist_ok=True)
    print(f"saving results npy file (3d joints) to [{npy_dir}]")
    mean = np.load(pjoin(opt.meta_dir, "mean.npy"))
    std = np.load(pjoin(opt.meta_dir, "std.npy"))
    samples = []

    root_list = []
    for i, motion in enumerate(pred_motions):
        motion = motion.cpu().numpy() * std + mean
        np.save(pjoin(npy_dir, f"raw_{i:02}.npy"), motion)
        npy_name = f"{i:02}.npy"
        # 1. recover 3d joints representation by ik
        motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num)
        # 2. put on Floor (Y axis)
        floor_height = motion.min(dim=0)[0].min(dim=0)[0][1]
        motion[:, :, 1] -= floor_height
        motion = motion.numpy()
        # 3. remove jitter
        motion = motion_temporal_filter(motion, sigma=1)

        # save root trajectory (Y axis)
        root_trajectory = motion[:, 0, :]
        root_list.append(root_trajectory)
        np.save(pjoin(root_dir, f"root_{i:02}.npy"), root_trajectory)
        y = root_trajectory[:, 1]

        plt.figure()
        plt.plot(y)

        plt.legend()

        plt.title("Root Joint Trajectory")
        plt.xlabel("Frame")
        plt.ylabel("Position")

        plt.savefig("./root_trajectory_xyz.png")
        np.save(pjoin(npy_dir, npy_name), motion)
        samples.append(motion)

    root_list_res = np.concatenate(root_list, axis=0)
    np.save("root_list.npy", root_list_res)
    
    # save the text and length conditions used for this generation
    with open(pjoin(out_path, "results.txt"), "w") as fw:
        fw.write("\n".join(texts))
    with open(pjoin(out_path, "results_lens.txt"), "w") as fw:
        fw.write("\n".join([str(l) for l in motion_lens]))

    # skeletal animation visualization
    print(f"saving motion videos to [{out_path}]...")
    for i, title in enumerate(texts):
        motion = samples[i]
        fname = f"{i:02}.mp4"
        kinematic_tree = (
            paramUtil.t2m_kinematic_chain
            if (opt.dataset_name == "t2m")
            else paramUtil.kit_kinematic_chain
        )
        plot_3d_motion(
            pjoin(out_path, fname),
            kinematic_tree,
            motion,
            title=title,
            fps=opt.fps,
            radius=opt.radius,
        )