File size: 18,622 Bytes
b887ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# This file code from T2M(https://github.com/EricGuo5513/text-to-motion), licensed under the https://github.com/EricGuo5513/text-to-motion/blob/main/LICENSE.
# Copyright (c) 2022 Chuan Guo
from os.path import join as pjoin
from typing import Union
import numpy as np
import os
from utils.quaternion import *
from utils.skeleton import Skeleton
from utils.paramUtil import *

import torch
from tqdm import tqdm

# positions (batch, joint_num, 3)
def uniform_skeleton(positions, target_offset):
    src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
    src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0]))
    src_offset = src_offset.numpy()
    tgt_offset = target_offset.numpy()
    
    '''Calculate Scale Ratio as the ratio of legs'''
    src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max()
    tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max()

    scale_rt = tgt_leg_len / src_leg_len
    src_root_pos = positions[:, 0]
    tgt_root_pos = src_root_pos * scale_rt

    '''Inverse Kinematics'''
    quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx)

    '''Forward Kinematics'''
    src_skel.set_offset(target_offset)
    new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos)
    return new_joints


def extract_features(positions, feet_thre, n_raw_offsets, kinematic_chain, face_joint_indx, fid_r, fid_l):
    global_positions = positions.copy()
    """ Get Foot Contacts """

    def foot_detect(positions, thres):
        velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])

        feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
        feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
        feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2

        feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float)

        feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
        feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
        feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2

        feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float)
        return feet_l, feet_r

    feet_l, feet_r = foot_detect(positions, feet_thre)

    '''Quaternion and Cartesian representation'''
    r_rot = None

    def get_rifke(positions):
        '''Local pose'''
        positions[..., 0] -= positions[:, 0:1, 0]
        positions[..., 2] -= positions[:, 0:1, 2]
        '''All pose face Z+'''
        positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
        return positions

    def get_quaternion(positions):
        skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
        # (seq_len, joints_num, 4)
        quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)

        '''Fix Quaternion Discontinuity'''
        quat_params = qfix(quat_params)
        # (seq_len, 4)
        r_rot = quat_params[:, 0].copy()
        #     print(r_rot[0])
        '''Root Linear Velocity'''
        # (seq_len - 1, 3)
        velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
        #     print(r_rot.shape, velocity.shape)
        velocity = qrot_np(r_rot[1:], velocity)
        '''Root Angular Velocity'''
        # (seq_len - 1, 4)
        r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
        quat_params[1:, 0] = r_velocity
        # (seq_len, joints_num, 4)
        return quat_params, r_velocity, velocity, r_rot

    def get_cont6d_params(positions):
        skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
        # (seq_len, joints_num, 4)
        quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)

        '''Quaternion to continuous 6D'''
        cont_6d_params = quaternion_to_cont6d_np(quat_params)
        
        # (seq_len, 4)
        r_rot = quat_params[:, 0].copy()
        
        '''Root Linear Velocity'''
        # (seq_len - 1, 3)
        velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
        
        velocity = qrot_np(r_rot[1:], velocity)
        
        '''Root Angular Velocity'''
        # (seq_len - 1, 4)
        r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
        # (seq_len, joints_num, 4)
        return cont_6d_params, r_velocity, velocity, r_rot

    cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
    positions = get_rifke(positions)

    '''Root height'''
    root_y = positions[:, 0, 1:2]

    '''Root rotation and linear velocity'''
    # (seq_len-1, 1) rotation velocity along y-axis
    # (seq_len-1, 2) linear velovity on xz plane
    r_velocity = np.arcsin(r_velocity[:, 2:3])
    l_velocity = velocity[:, [0, 2]]
    #     print(r_velocity.shape, l_velocity.shape, root_y.shape)
    root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)

    '''Get Joint Rotation Representation'''
    # (seq_len, (joints_num-1) *6) quaternion for skeleton joints
    rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)

    '''Get Joint Rotation Invariant Position Represention'''
    # (seq_len, (joints_num-1)*3) local joint position
    ric_data = positions[:, 1:].reshape(len(positions), -1)

    '''Get Joint Velocity Representation'''
    # (seq_len-1, joints_num*3)
    local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
                        global_positions[1:] - global_positions[:-1])
    local_vel = local_vel.reshape(len(local_vel), -1)

    data = root_data
    data = np.concatenate([data, ric_data[:-1]], axis=-1)
    data = np.concatenate([data, rot_data[:-1]], axis=-1)
    #     print(data.shape, local_vel.shape)
    data = np.concatenate([data, local_vel], axis=-1)
    data = np.concatenate([data, feet_l, feet_r], axis=-1)

    return data


def process_file(positions, feet_thre):
    '''Uniform Skeleton'''
    positions = uniform_skeleton(positions, tgt_offsets)

    '''Put on Floor'''
    floor_height = positions.min(axis=0).min(axis=0)[1]
    positions[:, :, 1] -= floor_height

    '''XZ at origin'''
    root_pos_init = positions[0]
    root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1])
    positions = positions - root_pose_init_xz

    # '''Move the first pose to origin '''
    # root_pos_init = positions[0]
    # positions = positions - root_pos_init[0]

    '''All initially face Z+'''
    r_hip, l_hip, sdr_r, sdr_l = face_joint_indx
    across1 = root_pos_init[r_hip] - root_pos_init[l_hip]
    across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l]
    across = across1 + across2
    across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis]

    # forward (3,), rotate around y-axis
    forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
    # forward (3,)
    forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis]

    #     print(forward_init)

    target = np.array([[0, 0, 1]])
    root_quat_init = qbetween_np(forward_init, target)
    root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init

    positions_b = positions.copy()

    positions = qrot_np(root_quat_init, positions)

    '''New ground truth positions'''
    global_positions = positions.copy()

    """ Get Foot Contacts """

    def foot_detect(positions, thres):
        velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])

        feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
        feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
        feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
        #     feet_l_h = positions[:-1,fid_l,1]
        #     feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)
        feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float)

        feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
        feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
        feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
        #     feet_r_h = positions[:-1,fid_r,1]
        #     feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)
        feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float)
        return feet_l, feet_r
    
    feet_l, feet_r = foot_detect(positions, feet_thre)

    '''Quaternion and Cartesian representation'''
    r_rot = None

    def get_rifke(positions):
        '''Local pose'''
        positions[..., 0] -= positions[:, 0:1, 0]
        positions[..., 2] -= positions[:, 0:1, 2]
        '''All pose face Z+'''
        positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
        return positions

    def get_quaternion(positions):
        skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
        # (seq_len, joints_num, 4)
        quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)

        '''Fix Quaternion Discontinuity'''
        quat_params = qfix(quat_params)
        # (seq_len, 4)
        r_rot = quat_params[:, 0].copy()
        #     print(r_rot[0])
        '''Root Linear Velocity'''
        # (seq_len - 1, 3)
        velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
        #     print(r_rot.shape, velocity.shape)
        velocity = qrot_np(r_rot[1:], velocity)
        '''Root Angular Velocity'''
        # (seq_len - 1, 4)
        r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
        quat_params[1:, 0] = r_velocity
        # (seq_len, joints_num, 4)
        return quat_params, r_velocity, velocity, r_rot

    def get_cont6d_params(positions):
        skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
        # (seq_len, joints_num, 4)
        quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)

        '''Quaternion to continuous 6D'''
        cont_6d_params = quaternion_to_cont6d_np(quat_params)
        # (seq_len, 4)
        r_rot = quat_params[:, 0].copy()
        #     print(r_rot[0])
        '''Root Linear Velocity'''
        # (seq_len - 1, 3)
        velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
        #     print(r_rot.shape, velocity.shape)
        velocity = qrot_np(r_rot[1:], velocity)
        '''Root Angular Velocity'''
        # (seq_len - 1, 4)
        r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
        # (seq_len, joints_num, 4)
        return cont_6d_params, r_velocity, velocity, r_rot

    cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
    positions = get_rifke(positions)

    '''Root height'''
    root_y = positions[:, 0, 1:2]

    '''Root rotation and linear velocity'''
    # (seq_len-1, 1) rotation velocity along y-axis
    # (seq_len-1, 2) linear velovity on xz plane
    r_velocity = np.arcsin(r_velocity[:, 2:3])
    l_velocity = velocity[:, [0, 2]]
    #     print(r_velocity.shape, l_velocity.shape, root_y.shape)
    root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)

    '''Get Joint Rotation Representation'''
    # (seq_len, (joints_num-1) *6) quaternion for skeleton joints
    rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)

    '''Get Joint Rotation Invariant Position Represention'''
    # (seq_len, (joints_num-1)*3) local joint position
    ric_data = positions[:, 1:].reshape(len(positions), -1)

    '''Get Joint Velocity Representation'''
    # (seq_len-1, joints_num*3)
    local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
                        global_positions[1:] - global_positions[:-1])
    local_vel = local_vel.reshape(len(local_vel), -1)

    data = root_data
    data = np.concatenate([data, ric_data[:-1]], axis=-1)
    data = np.concatenate([data, rot_data[:-1]], axis=-1)
    
    data = np.concatenate([data, local_vel], axis=-1)
    data = np.concatenate([data, feet_l, feet_r], axis=-1)

    return data, global_positions, positions, l_velocity


# Recover global angle and positions for rotation data
# root_rot_velocity (B, seq_len, 1)
# root_linear_velocity (B, seq_len, 2)
# root_y (B, seq_len, 1)
# ric_data (B, seq_len, (joint_num - 1)*3)
# rot_data (B, seq_len, (joint_num - 1)*6)
# local_velocity (B, seq_len, joint_num*3)
# foot contact (B, seq_len, 4)
def recover_root_rot_pos(data):
    rot_vel = data[..., 0]
    r_rot_ang = torch.zeros_like(rot_vel).to(data.device)
    '''Get Y-axis rotation from rotation velocity'''
    r_rot_ang[..., 1:] = rot_vel[..., :-1]
    r_rot_ang = torch.cumsum(r_rot_ang, dim=-1)

    r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device)
    r_rot_quat[..., 0] = torch.cos(r_rot_ang)
    r_rot_quat[..., 2] = torch.sin(r_rot_ang)

    r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device)
    r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3]
    '''Add Y-axis rotation to root position'''
    r_pos = qrot(qinv(r_rot_quat), r_pos)

    r_pos = torch.cumsum(r_pos, dim=-2)

    r_pos[..., 1] = data[..., 3]
    return r_rot_quat, r_pos


def recover_from_rot(data, joints_num, skeleton):
    r_rot_quat, r_pos = recover_root_rot_pos(data)

    r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)

    start_indx = 1 + 2 + 1 + (joints_num - 1) * 3
    end_indx = start_indx + (joints_num - 1) * 6
    cont6d_params = data[..., start_indx:end_indx]
    #     print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape)
    cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1)
    cont6d_params = cont6d_params.view(-1, joints_num, 6)

    positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos)

    return positions


# NOTE: Expand input data types (torch.Tensor -> Union[torch.Tensor, np.array])
def recover_from_ric(
    data: Union[torch.Tensor, np.array], joints_num: int
) -> Union[torch.Tensor, np.array]:
    if isinstance(data, np.ndarray):
        data = torch.from_numpy(data).float()
        dtype = "numpy"
    else:
        data = data.float()
        dtype = "tensor"
    r_rot_quat, r_pos = recover_root_rot_pos(data)
    positions = data[..., 4:(joints_num - 1) * 3 + 4]
    positions = positions.view(positions.shape[:-1] + (-1, 3))

    '''Add Y-axis rotation to local joints'''
    positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions)

    '''Add root XZ to joints'''
    positions[..., 0] += r_pos[..., 0:1]
    positions[..., 2] += r_pos[..., 2:3]

    '''Concate root and joints'''
    positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2)

    if dtype == "numpy":
        positions = positions.numpy()

    return positions
'''
For Text2Motion Dataset
'''
'''
if __name__ == "__main__":
    example_id = "000021"
    # Lower legs
    l_idx1, l_idx2 = 5, 8
    # Right/Left foot
    fid_r, fid_l = [8, 11], [7, 10]
    # Face direction, r_hip, l_hip, sdr_r, sdr_l
    face_joint_indx = [2, 1, 17, 16]
    # l_hip, r_hip
    r_hip, l_hip = 2, 1
    joints_num = 22
    # ds_num = 8
    data_dir = '../dataset/pose_data_raw/joints/'
    save_dir1 = '../dataset/pose_data_raw/new_joints/'
    save_dir2 = '../dataset/pose_data_raw/new_joint_vecs/'

    n_raw_offsets = torch.from_numpy(t2m_raw_offsets)
    kinematic_chain = t2m_kinematic_chain

    # Get offsets of target skeleton
    example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
    example_data = example_data.reshape(len(example_data), -1, 3)
    example_data = torch.from_numpy(example_data)
    tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
    # (joints_num, 3)
    tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
    # print(tgt_offsets)

    source_list = os.listdir(data_dir)
    frame_num = 0
    for source_file in tqdm(source_list):
        source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
        try:
            data, ground_positions, positions, l_velocity = process_file(source_data, 0.002)
            rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num)
            np.save(pjoin(save_dir1, source_file), rec_ric_data.squeeze().numpy())
            np.save(pjoin(save_dir2, source_file), data)
            frame_num += data.shape[0]
        except Exception as e:
            print(source_file)
            print(e)

    print('Total clips: %d, Frames: %d, Duration: %fm' %
          (len(source_list), frame_num, frame_num / 20 / 60))
'''

if __name__ == "__main__":
    example_id = "03950_gt"
    # Lower legs
    l_idx1, l_idx2 = 17, 18
    # Right/Left foot
    fid_r, fid_l = [14, 15], [19, 20]
    # Face direction, r_hip, l_hip, sdr_r, sdr_l
    face_joint_indx = [11, 16, 5, 8]
    # l_hip, r_hip
    r_hip, l_hip = 11, 16
    joints_num = 21
    # ds_num = 8
    data_dir = '../dataset/kit_mocap_dataset/joints/'
    save_dir1 = '../dataset/kit_mocap_dataset/new_joints/'
    save_dir2 = '../dataset/kit_mocap_dataset/new_joint_vecs/'

    n_raw_offsets = torch.from_numpy(kit_raw_offsets)
    kinematic_chain = kit_kinematic_chain

    '''Get offsets of target skeleton'''
    example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
    example_data = example_data.reshape(len(example_data), -1, 3)
    example_data = torch.from_numpy(example_data)
    tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
    # (joints_num, 3)
    tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
    # print(tgt_offsets)

    source_list = os.listdir(data_dir)
    frame_num = 0
    '''Read source data'''
    for source_file in tqdm(source_list):
        source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
        try:
            name = ''.join(source_file[:-7].split('_')) + '.npy'
            data, ground_positions, positions, l_velocity = process_file(source_data, 0.05)
            rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num)
            if np.isnan(rec_ric_data.numpy()).any():
                print(source_file)
                continue
            np.save(pjoin(save_dir1, name), rec_ric_data.squeeze().numpy())
            np.save(pjoin(save_dir2, name), data)
            frame_num += data.shape[0]
        except Exception as e:
            print(source_file)
            print(e)

    print('Total clips: %d, Frames: %d, Duration: %fm' %
          (len(source_list), frame_num, frame_num / 12.5 / 60))