File size: 6,554 Bytes
2b62c4c
 
 
 
 
 
 
 
3d6e45c
1c5b4ad
2b62c4c
a22854d
625e239
2b62c4c
 
 
1c5b4ad
2b62c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
db1ab48
 
2b62c4c
 
 
07a2d86
 
 
 
 
 
 
 
2b62c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217803b
07a2d86
 
 
 
 
 
2b62c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c5b4ad
db1ab48
 
 
 
 
1c5b4ad
db1ab48
1c5b4ad
2b62c4c
 
 
 
 
1c5b4ad
 
 
2b62c4c
 
 
 
 
da6c970
2b03fdd
2b62c4c
 
 
 
db1ab48
07a2d86
db1ab48
07a2d86
2b62c4c
65504f2
2b62c4c
 
 
 
 
da6c970
2b62c4c
 
 
 
625e239
db1ab48
 
625e239
 
 
 
 
2b62c4c
625e239
2b62c4c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import itertools
import os

import numpy as np
import pandas as pd
from datasets import load_dataset

import style
from style import T_SYMBOLS
from utils import add_model_hyperlink

ZERO_SHOT_ONLY = ["BELEBELE", "MT-Bench"]
FEW_SHOT_ONLY = ["GSM8K", "TruthfulQA"]


def init():
    global repo_id, config_name, split_name, hidden_df, task_group_names_list, task_group_type_dict, task_groups_shots_dict, languages_list, model_type_df, model_type_dict, mt_bench_language_list, model_link_dict, model_size_dict

    repo_id = os.getenv("OGX_LEADERBOARD_DATASET_NAME")
    config_name = os.getenv("OGX_LEADERBOARD_DATASET_CONFIG")
    split_name = os.getenv("OGX_LEADERBOARD_DATASET_SPLIT")

    dataset = load_dataset(repo_id, config_name, split=split_name)
    hidden_df = dataset.to_pandas()

    task_group_names_list = hidden_df["Task_Group"].unique().tolist()
    task_group_type_df = hidden_df[["Task_Group", "Task_Type"]].drop_duplicates()
    task_group_type_dict = task_group_type_df.set_index("Task_Group")["Task_Type"].to_dict()
    task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
    task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
    languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
    mt_bench_language_list = hidden_df[hidden_df["Task_Group"] == "MTBENCH"][
        "Language"].drop_duplicates().str.upper().tolist()
    model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
    model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()

    model_size_df = hidden_df[["Model_Name", "Model_Size"]].drop_duplicates()
    model_size_df['Model_Size'] = model_size_df['Model_Size'].fillna(0)
    model_size_dict = model_size_df.set_index("Model_Name")["Model_Size"].to_dict()

    model_link_df = hidden_df[["Model_Name", "Model_Link"]].drop_duplicates()
    model_link_df["Model_Link"] = model_link_df["Model_Link"].apply(lambda x: f"https://huggingface.co/" + str(x))
    model_link_dict = model_link_df.set_index("Model_Name")["Model_Link"].to_dict()

    hidden_df = hidden_df.pivot_table(
        columns=["Task_Group", "Few_Shot", "Language"],
        index=["Model_Name"],
        values="Value",
        dropna=False,
    ).reset_index(inplace=False)

    hidden_df["Type"] = hidden_df["Model_Name"].apply(lambda x: style.T_SYMBOLS[model_type_dict[x]])


def sort_cols(df: pd.DataFrame, fewshot: bool = False) -> pd.DataFrame:
    task_cols = get_task_columns(df)
    return df.reindex(["Type", "Model_Name", "Average"] + sorted(task_cols), axis=1)


def get_task_columns(df: pd.DataFrame) -> pd.DataFrame:
    l = list(df.columns)
    l.remove("Model_Name")
    l.remove("Average")
    l.remove("Type")
    return l


def get_models(df: pd.DataFrame) -> pd.DataFrame:
    return df["Model_Name"].unique()


def filter_type(df: pd.DataFrame, model_types: list[str]) -> pd.DataFrame:
    """Keep only rows for which model type is in list of types"""
    return df[df["Type"].isin(model_types)]


def filter_model_size(df: pd.DataFrame, model_sizes: list, lookup: dict):
    filtered_model_size = [model_name for model_name, model_size in lookup.items() if
                           model_sizes[0] <= model_size <= model_sizes[1]]
    filtered_df = df[df['Model_Name'].isin(filtered_model_size)]
    return filtered_df


def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
    """Keep only rows for which model name matches search query"""
    query = query.replace(";", "|")
    return df[df["Model_Name"].str.contains(query, case=False)]


def aggregate_langs(df: pd.DataFrame, tasks: list, langs: list):
    """Aggregates results over langs for each task in tasks.
    If a language does not exist for a task, the aggregate for
    that task will be shown as NaN.
    """

    langs_lower = [item.lower() for item in langs]
    df.columns = ["_".join(filter(None, col)) for col in df.columns]
    colset = set(df.columns)
    for t in tasks:
        cols = [(f"{a}_{b}") for a, b in itertools.product([t], langs_lower)]
        if set(cols).issubset(colset):
            df.loc[:, t] = df[cols].mean(axis=1, skipna=False)
        else:
            df.loc[:, t] = np.nan
    df.loc[:, "Average"] = df[tasks].mean(axis=1)
    return df[["Type", "Model_Name", "Average"] + tasks]


def select_shots(df: pd.DataFrame, fewshot: bool = False):
    cols = [col for col in df.columns if col[1] == fewshot] + []
    # Move model name and type icon to the end
    cols.append(("Model_Name", "", ""))
    cols.append(("Type", "", ""))
    return df[cols].droplevel(level=1, axis="columns")


def update_df(
        current_selected_tab: int,
        tasks: list[str],
        model_query: str,
        langs: list[str],
        model_sizes: list[str],
        fewshot: bool = False,
        model_types: list[str] = None,
        format: bool = True,

) -> pd.DataFrame:
    """Return a filtered dataframe according to selected models, tasks and
    languages. The format flag controls whether the output dataframe should
    be formatted to tw significant figures.
    """
    if current_selected_tab == 3:
        model_types = [T_SYMBOLS["chat"]]

    # keep only selected shots
    df = select_shots(hidden_df, fewshot)

    # aggregate results over languages per task
    df = aggregate_langs(df, tasks, langs)
    df = df.sort_values(by="Average", ascending=False)

    # filter models by search bar and model type
    df = search_model(df, model_query)
    df = filter_type(df, model_types)

    if model_sizes:
        df = filter_model_size(df=df, model_sizes=model_sizes, lookup=model_size_dict)

    df = add_model_hyperlink(df, model_link_dict)
    if format:
        return sort_cols(df, fewshot).style.format(precision=2, decimal=".", na_rep="N/A")
    else:
        return sort_cols(df, fewshot)


def get_selected_task_type(task_type_id):
    task_types = {0: "accuracy", 1: "misc", 2: "mtbench_score", 3: "accuracy"}
    selected_task_type = task_types[task_type_id]
    return selected_task_type


def get_available_task_groups(selected_task_type, fewshot):
    task_groups = [task_group_name for task_group_name, task_type in task_group_type_dict.items() if
                   task_type == selected_task_type]

    if fewshot:
        available_tasks = [c for c in task_groups if c not in ZERO_SHOT_ONLY]
    else:
        available_tasks = [c for c in task_groups if c not in FEW_SHOT_ONLY]

    return available_tasks


init()