File size: 11,683 Bytes
dee645c
 
 
 
 
 
 
 
 
 
4b0990a
 
 
 
17ea825
4b0990a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e000f79
4b0990a
 
4fc543d
 
4b0990a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e000f79
4b0990a
 
 
 
 
 
 
 
 
 
 
 
 
dee645c
 
 
 
4b0990a
dee645c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15409f2
 
dee645c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17ea825
 
 
 
 
dee645c
 
fbf122b
 
724a768
 
dee645c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from transformers import set_seed
from tqdm.auto import trange
from PIL import Image
import numpy as np
import random
import utils
import torch


CONFIG_SPEC = [
    ("General", [
        ("text", "A cloud at dawn", str),
        ("iterations", 5000, (0, 7500)),
        ("seed", 12, int),
        ("show_every", 10, int),
    ]),
    ("Rendering", [
        ("w", 224, [224, 252]),
        ("h", 224, [224, 252]),
        ("showoff", 5000, (0, 10000)),
        ("turns", 4, int),
        ("focal_length", 0.1, float),
        ("plane_width", 0.1, float),
        ("shade_strength", 0.25, float),
        ("gamma", 0.5, float),
        ("max_depth", 7, float),
        ("offset", 5, float),
        ("offset_random", 0.75, float),
        ("xyz_random", 0.25, float),
        ("altitude_range", 0.3, float),
        ("augments", 4, int),
    ]),
    ("Optimization", [
        ("epochs", 6, int),
        ("lr", 0.6, float),
        #@markdown CLIP loss type, might improve the results
        ("loss_type", "spherical", ["spherical", "cosine"]),
        #@markdown CLIP loss weight
        ("clip_weight", 1.0, float),        #@param {type: "number"}
    ]),
    ("Elements", [
        ("num_objects", 256, int),
        #@markdown Number of dimensions. 0 is for point clouds (default), 1 will make
        #@markdown strokes, 2 will make planes, 3 produces little cubes
        ("ndim", 0, [0, 1, 2, 3]),  #@param {type: "integer"}

        #@markdown Opacity scale:
        ("min_opacity", 1e-4, float),       #@param {type: "number"}
        ("max_opacity", 1.0, float),        #@param {type: "number"}
        ("log_opacity", False, bool),      #@param {type: "boolean"}

        ("min_radius", 0.030, float),
        ("max_radius", 0.170, float),
        ("log_radius", False, bool),

        # TODO dynamically decide bezier_res
        #@markdown Bezier resolution: how many points a line/plane/cube will have. Not applicable to points
        ("bezier_res", 8, int),  #@param {type: "integer"}
        #@markdown Maximum scale of parameters: position, velocity, acceleration
        ("pos_scale", 0.4, float),  #@param {type: "number"}
        ("vel_scale", 0.15, float),  #@param {type: "number"}
        ("acc_scale", 0.15, float),  #@param {type: "number"}

        #@markdown Scale of each individual 3D object. Master control for velocity and acceleration scale.
        ("scale", 1, float),  #@param {type: "number"}
    ]),
]


# TODO: one day separate the config into multiple parts and split this megaobject into multiple objects
# 2022/08/09: halfway done
class PulsarCLIP(object):
    def __init__(self, args):
        args = DotDict(**args)
        set_seed(args.seed)
        self.args = args
        self.device = args.get("device", "cuda" if torch.cuda.is_available() else "cpu")
        # Defer the import so that we can import `pulsar_clip` and then install `pytorch3d`
        import pytorch3d.renderer.points.pulsar as ps
        self.ndim = int(self.args.ndim)
        self.renderer = ps.Renderer(self.args.w, self.args.h,
                                    self.args.num_objects * (self.args.bezier_res ** self.ndim)).to(self.device)
        self.bezier_pos = torch.nn.Parameter(torch.randn((args.num_objects, 4)).to(self.device))
        self.bezier_vel = torch.nn.Parameter(torch.randn((args.num_objects, 3 * self.ndim)).to(self.device))
        self.bezier_acc = torch.nn.Parameter(torch.randn((args.num_objects, 3 * self.ndim)).to(self.device))
        self.bezier_col = torch.nn.Parameter(torch.randn((args.num_objects, 4 * (1 + self.ndim))).to(self.device))
        self.optimizer = torch.optim.Adam([dict(params=[self.bezier_col], lr=5e-1 * args.lr),
                                           dict(params=[self.bezier_pos], lr=1e-1 * args.lr),
                                           dict(params=[self.bezier_vel, self.bezier_acc], lr=5e-2 * args.lr),
                                           ])
        self.model_clip, self.preprocess_clip = utils.load_clip()
        self.model_clip.visual.requires_grad_(False)
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(self.optimizer,
                                                                              int(self.args.iterations
                                                                              / self.args.augments
                                                                              / self.args.epochs),
                                                                              eta_min=args.lr / 100)
        import clip
        self.txt_emb = self.model_clip.encode_text(clip.tokenize([self.args.text]).to(self.device))[0].detach()
        self.txt_emb = torch.nn.functional.normalize(self.txt_emb, dim=-1)

    def get_points(self):
        if self.ndim > 0:
            bezier_ts = torch.stack(torch.meshgrid(
                (torch.linspace(0, 1, self.args.bezier_res, device=self.device),) * self.ndim), dim=0
            ).unsqueeze(1).repeat((1, self.args.num_objects) + (1,) * self.ndim).unsqueeze(-1)

        def interpolate_3D(pos, vel=0.0, acc=0.0, pos_scale=None, vel_scale=None, acc_scale=None, scale=None):
            pos_scale = self.args.pos_scale if pos_scale is None else pos_scale
            vel_scale = self.args.vel_scale if vel_scale is None else vel_scale
            acc_scale = self.args.acc_scale if acc_scale is None else acc_scale
            scale = self.args.scale if scale is None else scale
            if self.ndim == 0:
                return pos * pos_scale
            result = 0.0
            s = pos.shape[-1]
            assert s * self.ndim == vel.shape[-1] == acc.shape[-1]
            # O(dim) sequential lol
            for d, bezier_t in zip(range(self.ndim), bezier_ts):  # TODO replace with fused dimension operation
                result = (result
                          + torch.tanh(vel[..., d * s:(d + 1) * s]).view(
                            (-1,) + (1,) * self.ndim + (s,)) * vel_scale * bezier_t
                          + torch.tanh(acc[..., d * s:(d + 1) * s]).view(
                            (-1,) + (1,) * self.ndim + (s,)) * acc_scale * bezier_t.pow(2))
            result = (result * scale
                      + torch.tanh(pos[..., :s]).view((-1,) + (1,) * self.ndim + (s,)) * pos_scale).view(-1, s)
            return result

        vert_pos = interpolate_3D(self.bezier_pos[..., :3], self.bezier_vel, self.bezier_acc)
        vert_col = interpolate_3D(self.bezier_col[..., :4],
                                  self.bezier_col[..., 4:4 + 4 * self.ndim],
                                  self.bezier_col[..., -4 * self.ndim:])

        to_bezier = lambda x: x.view((-1,) + (1,) * self.ndim + (x.shape[-1],)).repeat(
            (1,) + (self.args.bezier_res,) * self.ndim + (1,)).reshape(-1, x.shape[-1])
        rescale = lambda x, a, b, is_log=False: (torch.exp(x
                                                           * np.log(b / a)
                                                           + np.log(a))) if is_log else x * (b - a) + a
        return (
            vert_pos,
            torch.sigmoid(vert_col[..., :3]),
            rescale(
                torch.sigmoid(to_bezier(self.bezier_pos[..., -1:])[..., 0]),
                self.args.min_radius, self.args.max_radius, is_log=self.args.log_radius
            ),
            rescale(torch.sigmoid(vert_col[..., -1]),
                    self.args.min_opacity, self.args.max_opacity, is_log=self.args.log_opacity))

    def camera(self, angle, altitude=0.0, offset=None, use_random=True, offset_random=None,
               xyz_random=None, focal_length=None, plane_width=None):
        if offset is None:
            offset = self.args.offset
        if xyz_random is None:
            xyz_random = self.args.xyz_random
        if focal_length is None:
            focal_length = self.args.focal_length
        if plane_width is None:
            plane_width = self.args.plane_width
        if offset_random is None:
            offset_random = self.args.offset_random
        device = self.device
        offset = offset + np.random.normal() * offset_random * int(use_random)
        position = torch.tensor([0, 0, -offset], dtype=torch.float)
        position = utils.rotate_axis(position, altitude, 0)
        position = utils.rotate_axis(position, angle, 1)
        position = position + torch.randn(3) * xyz_random * int(use_random)
        return torch.tensor([position[0], position[1], position[2],
                             altitude, angle, 0,
                             focal_length, plane_width], dtype=torch.float, device=device)


    def render(self, cam_params=None):
        if cam_params is None:
            cam_params = self.camera(0, 0)
        vert_pos, vert_col, radius, opacity = self.get_points()

        rgb = self.renderer(vert_pos, vert_col, radius, cam_params,
                            self.args.gamma, self.args.max_depth, opacity=opacity)
        opacity = self.renderer(vert_pos, vert_col * 0, radius, cam_params,
                                self.args.gamma, self.args.max_depth, opacity=opacity)
        return rgb, opacity

    def random_view_render(self):
        angle = random.uniform(0, np.pi * 2)
        altitude = random.uniform(-self.args.altitude_range / 2, self.args.altitude_range / 2)
        cam_params = self.camera(angle, altitude)
        result, alpha = self.render(cam_params)
        back = torch.zeros_like(result)
        s = back.shape
        for j in range(s[-1]):
            n = random.choice([7, 14, 28])
            back[..., j] = utils.rand_perlin_2d_octaves(s[:-1], (n, n)).clip(-0.5, 0.5) + 0.5
        result = result * (1 - alpha) + back * alpha
        return result


    def generate(self):
        self.optimizer.zero_grad()
        try:
            for i in trange(self.args.iterations + self.args.showoff):
                if i < self.args.iterations:
                    result = self.random_view_render()
                    img_emb = self.model_clip.encode_image(
                        self.preprocess_clip(result.permute(2, 0, 1)).unsqueeze(0).clamp(0., 1.))
                    img_emb = torch.nn.functional.normalize(img_emb, dim=-1)
                    if self.args.loss_type == "spherical":
                        clip_loss = (img_emb - self.txt_emb).norm(dim=-1).div(2).arcsin().pow(2).mul(2).mean()
                    elif self.args.loss_type == "cosine":
                        clip_loss = (1 - img_emb @ self.txt_emb.T).mean()
                    else:
                        raise NotImplementedError(f"CLIP loss type not supported: {self.args.loss_type}")
                    loss = clip_loss * self.args.clip_weight + (0 and ...)  # TODO add more loss types
                    loss.backward()
                if i % self.args.augments == self.args.augments - 1:
                    self.optimizer.step()
                    self.optimizer.zero_grad()
                    try:
                        self.scheduler.step()
                    except AttributeError:
                        pass
                if i % self.args.show_every == 0:
                    cam_params = self.camera(i / self.args.iterations * np.pi * 2 * self.args.turns, use_random=False)
                    img_show, _ = self.render(cam_params)
                    img = Image.fromarray((img_show.cpu().detach().numpy() * 255).astype(np.uint8))
                    yield img
        except KeyboardInterrupt:
            pass
    
    
    def save_obj(self, fn):
        utils.save_obj(self.get_points(), fn)


class DotDict(dict):
    def __getattr__(self, item):
        return self.__getitem__(item)