File size: 5,107 Bytes
11609ab
 
 
 
 
 
 
 
 
 
 
 
 
08b5c43
 
05ccb9e
 
11609ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4593130
11609ab
17963e1
11609ab
 
 
 
 
 
08b5c43
 
 
11609ab
 
08b5c43
17963e1
 
 
11609ab
 
36d6aae
11609ab
17963e1
11609ab
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
import requests
import os 

##Bloom
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}


def sql_generate(prompt, input_prompt_sql ): 

  print(f"*****Inside SQL_generate - Prompt is :{prompt}")
  print(f"length of input_prompt_sql is {len(input_prompt_sql)}")
  print(f"length of prompt is {len(prompt)}")
  if len(input_prompt_sql) == 0:
    prompt = "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: " +input_prompt_sql #+ "\nPostgreSQL query: "
    
  json_ = {"inputs": prompt,
            "parameters":
            {
            "top_p": 0.9,
          "temperature": 1.1,
          "max_new_tokens": 250,
          "return_full_text": False,
          }, 
          "options": 
          {"use_cache": True,
          "wait_for_model": True,
          },}
  response = requests.post(API_URL, headers=headers, json=json_)
  print(f"Response  is : {response}")
  output = response.json()
  print(f"output is : {output}") #{output}")
  output_tmp = output[0]['generated_text']
  print(f"output_tmp is: {output_tmp}")
  solution = output_tmp.split("\nQ:")[0]   #output[0]['generated_text'].split("Q:")[0] # +"."
  print(f"Final response after splits is: {solution}")
  if '\nOutput:' in solution:
    final_solution = solution.split("\nOutput:")[0] 
    print(f"Response after removing output is: {final_solution}")
  elif '\n\n' in solution:
    final_solution = solution.split("\n\n")[0] 
    print(f"Response after removing new line entries is: {final_solution}")
  else:
    final_solution = solution
  return final_solution 


demo = gr.Blocks()

with demo:
  gr.Markdown("<h1><center>Zero Shot SQL by Bloom</center></h1>")
  gr.Markdown(
        """[BigScienceW Bloom](https://twitter.com/BigscienceW) \n\n Large language models have demonstrated a capability of Zero-Shot SQL generation. Some might say — You can get good results out of LLMs if you know how to speak to them. This space is an attempt at inspecting this behavior/capability in the new HuggingFace BigScienceW [Bloom](https://huggingface.co/bigscience/bloom) model. \n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma) for EuroPython 2022 Demo.\nThe Prompt length is limited at the API end right now, thus there is a certain limitation in testing Bloom's capability thoroughly.\nThis Space might sometime fail due to inference queue being full and logs would end up showing error as *'queue full, try again later'*, in such cases please try again after few minutes. Please note that, longer prompts might not work as well and the Space could error out with Response code [500] or *'A very long prompt, temporarily not accepting these'* message in the logs.\nStill iterating over the app, might be able to improve it further soon.."""
        )
  with gr.Row():
  
    example_prompt = gr.Radio( [
    "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: How many users signed up in the past month?\nPostgreSQL query: ", 
    "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: Create a query that displays empfname, emplname, deptid, deptname, location from employee table. Results should be in the ascending order based on the empfname and location.\nPostgreSQL query: ", 
    "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use tables called 'employees'.\nInput: What is the total salary paid to all the employees?\nPostgreSQL query: ",
    "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use tables called 'employees'.\nInput: List names of all the employees whose name end with 'r'.\nPostgreSQL query: ",
    "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use tables called 'employees'.\nInput: What are the number of employees in each department?\nPostgreSQL query: ",
    "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all theemployees who have third character in their name as 't'.\nPostgreSQL query: ",
    "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all the employees who are working under 'Peter'\nPostgreSQL query: ",  ], label= "Choose a sample Prompt")
  
    with gr.Column:  
      input_prompt_sql = gr.Textbox(label="Or Write text following the example pattern given below, to get SQL commands...", value="Only use table called 'department'.\nInput: Select names of all the departments in descending alphabetical order of department names.\nPostgreSQL query: ", lines=5)
      b1 = gr.Button("Generate SQL")
    
  with gr.Row():
    generated_txt = gr.Textbox(lines=3)
  
  
  b1.click(sql_generate,inputs=[example_prompt, input_prompt_sql], outputs=generated_txt) 

demo.launch(enable_queue=True, debug=True)