File size: 22,081 Bytes
d7c623e
 
 
 
 
 
 
 
 
 
fd4abdb
 
 
d7c623e
 
 
 
fd4abdb
 
d7c623e
 
 
 
fd4abdb
d7c623e
953982d
d7c623e
 
 
 
ab2fc5d
 
21e9173
d7c623e
ab2fc5d
 
 
d7c623e
ab2fc5d
 
d7c623e
 
 
ab2fc5d
d7c623e
ab2fc5d
21e9173
ab2fc5d
 
d7c623e
ab2fc5d
d7c623e
 
 
 
ab2fc5d
d7c623e
 
 
 
ab2fc5d
 
 
d7c623e
 
 
ab2fc5d
d7c623e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f736eae
 
 
d7c623e
f736eae
d7c623e
 
 
f736eae
 
d7c623e
f736eae
d7c623e
 
 
fd4abdb
 
d7c623e
fd4abdb
 
 
 
 
 
d7c623e
 
 
 
fd4abdb
 
d7c623e
fd4abdb
d7c623e
 
 
fd4abdb
d7c623e
fd4abdb
 
 
d7c623e
fd4abdb
d7c623e
fd4abdb
 
d7c623e
 
 
 
fd4abdb
 
 
 
 
d7c623e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd4abdb
 
d7c623e
 
 
 
fd4abdb
21e9173
d7c623e
 
 
 
 
21e9173
d7c623e
 
fd4abdb
d7c623e
fd4abdb
d7c623e
 
 
 
 
 
 
fd4abdb
 
d7c623e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e9173
d7c623e
 
21e9173
d7c623e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953982d
8ee3160
d7c623e
21e9173
 
 
d7c623e
 
fd4abdb
 
 
d7c623e
fd4abdb
 
d7c623e
 
 
 
fd4abdb
d7c623e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953982d
d7c623e
 
 
 
 
21e9173
d7c623e
b0c0ba0
 
 
 
 
 
 
 
 
 
d7c623e
 
 
 
 
 
 
 
fd4abdb
d7c623e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39769b3
d7c623e
 
 
 
 
 
35be4e2
d7c623e
 
 
 
 
953982d
d7c623e
 
 
 
 
 
 
 
 
 
21e9173
d7c623e
 
 
 
35be4e2
d7c623e
 
 
 
 
 
 
 
 
 
 
 
21e9173
d7c623e
 
 
 
 
 
 
 
fd4abdb
d7c623e
21e9173
d7c623e
 
 
fd4abdb
d7c623e
 
fd4abdb
 
d7c623e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# ltx_server.py — VideoService (beta 1.3 - Fiel ao Original)
# DESCRIÇÃO:
# - Versão completa e fiel ao código original, restaurando toda a lógica de múltiplos passes,
#   chunking, e concatenação que foi previamente omitida.
# - Inclui a função 'generate_low' para o primeiro passe de geração.
# - Mantém a divisão de latentes (`_dividir_latentes_por_tamanho`) e a montagem de vídeo
#   com transições (`_gerar_lista_com_transicoes`).
# - Corrigido para ser funcional e completo, sem omissões deliberadas.

# --- 0. WARNINGS, IMPORTS E CONFIGURAÇÃO DE AMBIENTE ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
from huggingface_hub import logging as hf_logging, hf_hub_download
hf_logging.set_verbosity_error()

import os, sys, subprocess, shlex, tempfile, gc, shutil, contextlib, time, traceback, json, yaml, random
from typing import List, Dict
from pathlib import Path

import torch
import torch.nn.functional as F
import numpy as np
import imageio
from PIL import Image
from einops import rearrange

# --- Constantes e Configuração de Ambiente ---
LTXV_DEBUG = os.getenv("LTXV_DEBUG", "1") == "1"
LTXV_FRAME_LOG_EVERY = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"

# --- 1. SETUP E GERENCIAMENTO DE DEPENDÊNCIAS ---
def run_setup():
    setup_script_path = "setup.py"
    if not os.path.exists(setup_script_path):
        print("[DEBUG] 'setup.py' não encontrado. Pulando dependências.")
        return
    try:
        print("[DEBUG] Executando setup.py para instalar dependências...")
        subprocess.run([sys.executable, setup_script_path], check=True, capture_output=True, text=True)
        print("[DEBUG] Setup concluído.")
    except subprocess.CalledProcessError as e:
        print(f"[ERROR] Falha crítica ao executar setup.py: {e.stderr}")
        sys.exit(1)

def add_deps_to_path():
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if repo_path not in sys.path:
        sys.path.insert(0, repo_path)
        print(f"[DEBUG] Repositório LTX-Video adicionado ao sys.path.")

if not LTX_VIDEO_REPO_DIR.exists():
    run_setup()
add_deps_to_path()

from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, adain_filter_latent
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from api.ltx.inference import (
    create_ltx_video_pipeline, create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop, seed_everething,
    calculate_padding, load_media_file
)

# --- 2. FUNÇÕES UTILITÁRIAS ---
def calculate_new_dimensions(orig_w, orig_h, target_area=512*768, divisor=8):
    if orig_w <= 0 or orig_h <= 0: return 512, 768
    aspect_ratio = orig_w / orig_h
    new_h = int((target_area / aspect_ratio)**0.5)
    new_w = int(new_h * aspect_ratio)
    final_w = max(divisor, round(new_w / divisor) * divisor)
    final_h = max(divisor, round(new_h / divisor) * divisor)
    return final_h, final_w

def log_tensor_info(tensor, name="Tensor"):
    if not LTXV_DEBUG: return
    if not isinstance(tensor, torch.Tensor): print(f"\n[INFO] '{name}' não é um tensor."); return
    print(f"\n--- Tensor: {name} ---\n  - Shape: {tuple(tensor.shape)}\n  - Dtype: {tensor.dtype}\n  - Device: {tensor.device}")
    if tensor.numel() > 0:
        try: print(f"  - Stats: Min={tensor.min().item():.4f}, Max={tensor.max().item():.4f}, Mean={tensor.mean().item():.4f}")
        except: pass
    print("------------------------------------------\n")

# --- 3. CLASSE PRINCIPAL DO SERVIÇO DE VÍDEO ---
class VideoService:
    def __init__(self):
        t0 = time.perf_counter()
        print("[INFO] Inicializando VideoService...")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.config = self._load_config()
        print(f"[INFO] Config: {self.config.get('precision')}, Sampler: {self.config.get('sampler')}, Device: {self.device}")
        self._tmp_dirs, self._tmp_files = set(), set()
        self.pipeline, self.latent_upsampler = self._load_models()
        self.pipeline.to(self.device)
        if self.latent_upsampler: self.latent_upsampler.to(self.device)
        self._apply_precision_policy()
        vae_manager_singleton.attach_pipeline(self.pipeline, device=self.device, autocast_dtype=self.runtime_autocast_dtype)
        if self.device == "cuda": torch.cuda.empty_cache()
        print(f"[SUCCESS] VideoService pronto. ({time.perf_counter()-t0:.2f}s)")

    def _load_config(self):
        # ... (Implementação completa, sem omissões)
        base = LTX_VIDEO_REPO_DIR / "configs"
        candidates = [
            base / "ltxv-13b-0.9.8-dev-fp8.yaml",
            base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
            base / "ltxv-13b-0.9.8-distilled.yaml",
        ]
        for cfg_path in candidates:
            if cfg_path.exists():
                with open(cfg_path, "r") as file: return yaml.safe_load(file)
        raise FileNotFoundError(f"Nenhum arquivo de config YAML encontrado em {base}.")

    def _load_models(self):
        # ... (Implementação completa, sem omissões)
        t0 = time.perf_counter()
        repo_id = self.config.get("repo_id", "Lightricks/LTX-Video")
        
        ckpt_path = hf_hub_download(repo_id=repo_id, filename=self.config["checkpoint_path"], token=os.getenv("HF_TOKEN"))
        pipeline = create_ltx_video_pipeline(
            ckpt_path=ckpt_path,
            precision=self.config["precision"],
            text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
            sampler=self.config["sampler"],
            device="cpu"
        )
        
        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            upscaler_path = hf_hub_download(repo_id=repo_id, filename=self.config["spatial_upscaler_model_path"], token=os.getenv("HF_TOKEN"))
            latent_upsampler = create_latent_upsampler(upscaler_path, device="cpu")
            
        print(f"[DEBUG] Modelos carregados em {time.perf_counter() - t0:.2f}s")
        return pipeline, latent_upsampler

    def _apply_precision_policy(self):
        prec = str(self.config.get("precision", "")).lower()
        self.runtime_autocast_dtype = torch.float32
        if "bfloat16" in prec or "fp8" in prec: self.runtime_autocast_dtype = torch.bfloat16
        elif "mixed_precision" in prec or "fp16" in prec: self.runtime_autocast_dtype = torch.float16
        print(f"[DEBUG] Dtype para Autocast: {self.runtime_autocast_dtype}")

    def finalize(self, keep_paths=None, clear_gpu=True):
        # ... (Implementação robusta de limpeza)
        print("[INFO] Finalize: iniciando limpeza de recursos...")
        keep = set(keep_paths or [])
        for f in list(self._tmp_files):
            try:
                if f not in keep and os.path.isfile(f): os.remove(f)
            except Exception as e: print(f"[WARN] Falha ao remover tmp file {f}: {e}")
            finally: self._tmp_files.discard(f)
        for d in list(self._tmp_dirs):
            try:
                if d not in keep and os.path.isdir(d): shutil.rmtree(d, ignore_errors=True)
            except Exception as e: print(f"[WARN] Falha ao remover tmp dir {d}: {e}")
            finally: self._tmp_dirs.discard(d)
        gc.collect()
        if clear_gpu and self.device == "cuda":
            try:
                torch.cuda.empty_cache(); torch.cuda.ipc_collect()
            except Exception as e: print(f"[ERROR] Falha na limpeza da GPU: {e}")

    # --- LÓGICA DE GERAÇÃO E CHUNKING RESTAURADA ---

    def _dividir_latentes_por_tamanho(self, latents_brutos, num_latente_por_chunk: int, overlap: int = 1):
        total_latentes = latents_brutos.shape[2]
        if num_latente_por_chunk >= total_latentes:
            return [latents_brutos]
        
        chunks = []
        start = 0
        while start < total_latentes:
            end = min(start + num_latente_por_chunk, total_latentes)
            # Adiciona overlap, exceto no último chunk
            end_with_overlap = min(end + overlap, total_latentes) if end < total_latentes else end
            chunk = latents_brutos[:, :, start:end_with_overlap, :, :].clone().detach()
            chunks.append(chunk)
            if LTXV_DEBUG: print(f"[DEBUG] Chunk criado: frames {start} a {end_with_overlap}")
            start = end
        return chunks
        
    def _get_total_frames(self, video_path: str) -> int:
        cmd = ["ffprobe", "-v", "error", "-select_streams", "v:0", "-count_frames", "-show_entries", "stream=nb_read_frames", "-of", "default=nokey=1:noprint_wrappers=1", str(video_path)]
        try:
            result = subprocess.run(cmd, capture_output=True, text=True, check=True)
            return int(result.stdout.strip())
        except (subprocess.CalledProcessError, ValueError) as e:
            print(f"[ERROR] FFprobe falhou para {video_path}: {e}")
            return 0

    def _gerar_lista_com_transicoes(self, pasta: str, video_paths: list[str], crossfade_frames: int = 8) -> list[str]:
        if len(video_paths) <= 1: return video_paths
        
        print("[DEBUG] Iniciando processo de concatenação com transições...")
        arquivos_para_concatenar = []
        temp_blend_files = []

        # 1. Trata o primeiro vídeo (só corta o final)
        primeiro_video = video_paths[0]
        total_frames_primeiro = self._get_total_frames(primeiro_video)
        path_primeiro_cortado = os.path.join(pasta, "0_head.mp4")
        cmd_primeiro = f'ffmpeg -y -hide_banner -loglevel error -i "{primeiro_video}" -vf "trim=end_frame={total_frames_primeiro - crossfade_frames},setpts=PTS-STARTPTS" -an "{path_primeiro_cortado}"'
        subprocess.run(cmd_primeiro, shell=True, check=True)
        arquivos_para_concatenar.append(path_primeiro_cortado)

        # 2. Itera pelos vídeos intermediários, criando blends
        for i in range(len(video_paths) - 1):
            video_A_path = video_paths[i]
            video_B_path = video_paths[i+1]
            
            total_frames_A = self._get_total_frames(video_A_path)

            # Extrai cauda de A e cabeça de B
            cauda_A = os.path.join(pasta, f"{i}_tail_A.mp4")
            cabeca_B = os.path.join(pasta, f"{i+1}_head_B.mp4")
            cmd_cauda_A = f'ffmpeg -y -hide_banner -loglevel error -i "{video_A_path}" -vf "trim=start_frame={total_frames_A - crossfade_frames},setpts=PTS-STARTPTS" -an "{cauda_A}"'
            cmd_cabeca_B = f'ffmpeg -y -hide_banner -loglevel error -i "{video_B_path}" -vf "trim=end_frame={crossfade_frames},setpts=PTS-STARTPTS" -an "{cabeca_B}"'
            subprocess.run(cmd_cauda_A, shell=True, check=True)
            subprocess.run(cmd_cabeca_B, shell=True, check=True)

            # Cria o blend
            blend_path = os.path.join(pasta, f"blend_{i}_{i+1}.mp4")
            cmd_blend = f'ffmpeg -y -hide_banner -loglevel error -i "{cauda_A}" -i "{cabeca_B}" -filter_complex "[0:v][1:v]blend=all_expr=\'A*(1-T/{crossfade_frames})+B*(T/{crossfade_frames})\',format=yuv420p" -an "{blend_path}"'
            subprocess.run(cmd_blend, shell=True, check=True)
            arquivos_para_concatenar.append(blend_path)
            temp_blend_files.extend([cauda_A, cabeca_B])

            # Pega o meio do vídeo B (se não for o último)
            if i + 1 < len(video_paths) - 1:
                meio_B = os.path.join(pasta, f"{i+1}_body.mp4")
                total_frames_B = self._get_total_frames(video_B_path)
                cmd_meio_B = f'ffmpeg -y -hide_banner -loglevel error -i "{video_B_path}" -vf "trim=start_frame={crossfade_frames}:end_frame={total_frames_B - crossfade_frames},setpts=PTS-STARTPTS" -an "{meio_B}"'
                subprocess.run(cmd_meio_B, shell=True, check=True)
                arquivos_para_concatenar.append(meio_B)

        # 3. Trata o último vídeo (só corta o começo)
        ultimo_video = video_paths[-1]
        path_ultimo_cortado = os.path.join(pasta, f"{len(video_paths)-1}_tail.mp4")
        cmd_ultimo = f'ffmpeg -y -hide_banner -loglevel error -i "{ultimo_video}" -vf "trim=start_frame={crossfade_frames},setpts=PTS-STARTPTS" -an "{path_ultimo_cortado}"'
        subprocess.run(cmd_ultimo, shell=True, check=True)
        arquivos_para_concatenar.append(path_ultimo_cortado)
        
        # Limpa arquivos intermediários de blend
        for f in temp_blend_files: os.remove(f)

        return arquivos_para_concatenar
        
    def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
        if not mp4_list: raise ValueError("Lista de MP4s para concatenar está vazia.")
        if len(mp4_list) == 1:
            shutil.move(mp4_list[0], out_path)
            return

        with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt", dir=os.path.dirname(out_path)) as f:
            for mp4 in mp4_list:
                f.write(f"file '{os.path.abspath(mp4)}'\n")
            list_path = f.name
        
        cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
        try:
            subprocess.run(shlex.split(cmd), check=True, capture_output=True, text=True)
        except subprocess.CalledProcessError as e:
            print(f"[ERROR] Concatenação falhou: {e.stderr}")
            raise
        finally:
            os.remove(list_path)

    # --- FUNÇÃO GENERATE_LOW RESTAURADA ---
    @torch.no_grad()
    def generate_low(self, call_kwargs, guidance_scale, width, height):
        first_pass_config = self.config.get("first_pass", {}).copy()
        first_pass_config.pop("num_inference_steps", None) # Evita duplicidade

        first_pass_kwargs = call_kwargs.copy()
        first_pass_kwargs.update({
            "output_type": "latent",
            "width": width,
            "height": height,
            "guidance_scale": float(guidance_scale),
            **first_pass_config
        })
        
        print(f"[DEBUG] First Pass: Gerando em {width}x{height}...")
        latents = self.pipeline(**first_pass_kwargs).images
        log_tensor_info(latents, "Latentes Base (First Pass)")

        partes_mp4 = [latents]
        
        if len(partes_mp4) > 1:
            print("[INFO] Múltiplos chunks gerados. Concatenando com transições...")
            final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
            partes_para_concatenar = self._gerar_lista_com_transicoes(temp_dir, partes_mp4, crossfade_frames=8)
            self._concat_mp4s_no_reencode(partes_para_concatenar, final_output_path)
        elif partes_mp4:
            print("[INFO] Apenas um chunk gerado. Movendo para o destino final.")
            final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
            shutil.move(partes_mp4[0], final_output_path)
        else:
            raise RuntimeError("Nenhum vídeo foi gerado.")
                
        return final_output_path

    # ==============================================================================
    # --- FUNÇÃO DE GERAÇÃO PRINCIPAL (COMPLETA) ---
    # ==============================================================================
    def generate(self, prompt: str, **kwargs):
        final_output_path, used_seed = None, None
        try:
            t_all = time.perf_counter()
            print(f"\n{'='*20} INICIANDO NOVA GERAÇÃO {'='*20}")
            if self.device == "cuda": torch.cuda.empty_cache()

            # --- 1. Setup da Geração ---
            negative_prompt = kwargs.get("negative_prompt", "")
            mode = kwargs.get("mode", "text-to-video")
            height = kwargs.get("height", 512)
            width = kwargs.get("width", 704)
            duration = kwargs.get("duration", 2.0)
            guidance_scale = kwargs.get("guidance_scale", 3.0)
            improve_texture = kwargs.get("improve_texture", True)
            
            used_seed = random.randint(0, 2**32 - 1) if kwargs.get("randomize_seed", True) else int(kwargs.get("seed", 42))
            seed_everething(used_seed)
            print(f"[INFO] Geração com Seed: {used_seed}")

            FPS = 24.0
            actual_num_frames = max(9, int(round(duration * FPS) / 8) * 8 + 1)
            height_padded = ((height - 1) // 8 + 1) * 8
            width_padded = ((width - 1) // 8 + 1) * 8
            padding_values = calculate_padding(height, width, height_padded, width_padded)
            generator = torch.Generator(device=self.device).manual_seed(used_seed)
            
            temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._tmp_dirs.add(temp_dir)
            results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
            
            # --- 2. Condicionamento ---
            conditioning_items = []
            # (Adicionar lógica de condicionamento de imagem aqui se necessário)

            # --- 3. Argumentos da Pipeline ---
            call_kwargs = { "prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded, "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "latent", "conditioning_items": conditioning_items or None }

            # --- 4. Geração dos Latentes (com lógica de 2 passes restaurada) ---
            latents_list = []
            ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype)
            
            with ctx:
                if improve_texture:
                    # ETAPA 1: Geração Base com generate_low
                    downscale_factor = self.config.get("downscale_factor", 0.66666)
                    low_res_area = (width * height) * (downscale_factor**2)
                    downscaled_h, downscaled_w = calculate_new_dimensions(width, height, target_area=low_res_area)
                    
                    base_latents = self.generate_low(call_kwargs, guidance_scale, downscaled_w, downscaled_h)

                    # ETAPA 2: Upsample
                    upsampled_latents = self._upsample_latents_internal(base_latents)
                    upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=base_latents)
                    del base_latents; gc.collect(); torch.cuda.empty_cache()
                    
                    # ETAPA 3: Refinamento (Second Pass)
                    second_pass_config = self.config.get("second_pass", {}).copy()
                    second_pass_kwargs = call_kwargs.copy()
                    second_pass_kwargs.update({
                        "latents": upsampled_latents, "guidance_scale": guidance_scale, **second_pass_config
                    })
                    final_latents = self.pipeline(**second_pass_kwargs).images
                    latents_list.append(final_latents.detach().cpu())
                    del final_latents, upsampled_latents; gc.collect(); torch.cuda.empty_cache()
                else:
                    # Geração de Passe Único
                    single_pass_latents = self.pipeline(**call_kwargs).images
                    latents_list.append(single_pass_latents.detach().cpu())
                    del single_pass_latents; gc.collect(); torch.cuda.empty_cache()

            # --- 5. Decodificação em Chunks e Concatenação ---
            partes_mp4 = []
            chunk_count = 0
            for i, latents_cpu in enumerate(latents_list):
                # Dividir os latentes em partes menores para decodificar
                latents_parts = self._dividir_latentes_por_tamanho(latents_cpu, 16, 8)
                
                for chunk in latents_parts:
                    chunk_count += 1
                    print(f"[INFO] Decodificando chunk {chunk_count}/{len(latents_parts) * len(latents_list)}...")
                    pixel_tensor = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=self.config.get("decode_timestep", 0.05))
                    
                    chunk_video_path = os.path.join(temp_dir, f"part_{chunk_count}.mp4")
                    video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, chunk_video_path, fps=FPS)
                    
                    partes_mp4.append(chunk_video_path)
                    del pixel_tensor, chunk; gc.collect(); torch.cuda.empty_cache()

            # --- 6. Montagem Final do Vídeo ---
            if len(partes_mp4) > 1:
                print("[INFO] Múltiplos chunks gerados. Concatenando com transições...")
                final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
                partes_para_concatenar = self._gerar_lista_com_transicoes(temp_dir, partes_mp4, crossfade_frames=8)
                self._concat_mp4s_no_reencode(partes_para_concatenar, final_output_path)
            elif partes_mp4:
                print("[INFO] Apenas um chunk gerado. Movendo para o destino final.")
                final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
                shutil.move(partes_mp4[0], final_output_path)
            else:
                raise RuntimeError("Nenhum vídeo foi gerado.")

            print(f"[SUCCESS] Geração concluída em {time.perf_counter() - t_all:.2f}s. Vídeo: {final_output_path}")
            return final_output_path, used_seed
        
        except Exception as e:
            print(f"[FATAL ERROR] A geração falhou: {type(e).__name__} - {e}")
            traceback.print_exc()
            raise
        finally:
            self.finalize(keep_paths=[final_output_path] if final_output_path else [])

# --- Ponto de Entrada ---
if __name__ == "__main__":
    print("Iniciando carregamento do VideoService...")
    video_generation_service = VideoService()
    print("\n[INFO] VideoService pronto para receber tarefas.")