File size: 22,081 Bytes
d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e 953982d d7c623e ab2fc5d 21e9173 d7c623e ab2fc5d d7c623e ab2fc5d d7c623e ab2fc5d d7c623e ab2fc5d 21e9173 ab2fc5d d7c623e ab2fc5d d7c623e ab2fc5d d7c623e ab2fc5d d7c623e ab2fc5d d7c623e f736eae d7c623e f736eae d7c623e f736eae d7c623e f736eae d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb 21e9173 d7c623e 21e9173 d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e 21e9173 d7c623e 21e9173 d7c623e 953982d 8ee3160 d7c623e 21e9173 d7c623e fd4abdb d7c623e fd4abdb d7c623e fd4abdb d7c623e 953982d d7c623e 21e9173 d7c623e b0c0ba0 d7c623e fd4abdb d7c623e 39769b3 d7c623e 35be4e2 d7c623e 953982d d7c623e 21e9173 d7c623e 35be4e2 d7c623e 21e9173 d7c623e fd4abdb d7c623e 21e9173 d7c623e fd4abdb d7c623e fd4abdb d7c623e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# ltx_server.py — VideoService (beta 1.3 - Fiel ao Original)
# DESCRIÇÃO:
# - Versão completa e fiel ao código original, restaurando toda a lógica de múltiplos passes,
# chunking, e concatenação que foi previamente omitida.
# - Inclui a função 'generate_low' para o primeiro passe de geração.
# - Mantém a divisão de latentes (`_dividir_latentes_por_tamanho`) e a montagem de vídeo
# com transições (`_gerar_lista_com_transicoes`).
# - Corrigido para ser funcional e completo, sem omissões deliberadas.
# --- 0. WARNINGS, IMPORTS E CONFIGURAÇÃO DE AMBIENTE ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
from huggingface_hub import logging as hf_logging, hf_hub_download
hf_logging.set_verbosity_error()
import os, sys, subprocess, shlex, tempfile, gc, shutil, contextlib, time, traceback, json, yaml, random
from typing import List, Dict
from pathlib import Path
import torch
import torch.nn.functional as F
import numpy as np
import imageio
from PIL import Image
from einops import rearrange
# --- Constantes e Configuração de Ambiente ---
LTXV_DEBUG = os.getenv("LTXV_DEBUG", "1") == "1"
LTXV_FRAME_LOG_EVERY = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
# --- 1. SETUP E GERENCIAMENTO DE DEPENDÊNCIAS ---
def run_setup():
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("[DEBUG] 'setup.py' não encontrado. Pulando dependências.")
return
try:
print("[DEBUG] Executando setup.py para instalar dependências...")
subprocess.run([sys.executable, setup_script_path], check=True, capture_output=True, text=True)
print("[DEBUG] Setup concluído.")
except subprocess.CalledProcessError as e:
print(f"[ERROR] Falha crítica ao executar setup.py: {e.stderr}")
sys.exit(1)
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
print(f"[DEBUG] Repositório LTX-Video adicionado ao sys.path.")
if not LTX_VIDEO_REPO_DIR.exists():
run_setup()
add_deps_to_path()
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, adain_filter_latent
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from api.ltx.inference import (
create_ltx_video_pipeline, create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop, seed_everething,
calculate_padding, load_media_file
)
# --- 2. FUNÇÕES UTILITÁRIAS ---
def calculate_new_dimensions(orig_w, orig_h, target_area=512*768, divisor=8):
if orig_w <= 0 or orig_h <= 0: return 512, 768
aspect_ratio = orig_w / orig_h
new_h = int((target_area / aspect_ratio)**0.5)
new_w = int(new_h * aspect_ratio)
final_w = max(divisor, round(new_w / divisor) * divisor)
final_h = max(divisor, round(new_h / divisor) * divisor)
return final_h, final_w
def log_tensor_info(tensor, name="Tensor"):
if not LTXV_DEBUG: return
if not isinstance(tensor, torch.Tensor): print(f"\n[INFO] '{name}' não é um tensor."); return
print(f"\n--- Tensor: {name} ---\n - Shape: {tuple(tensor.shape)}\n - Dtype: {tensor.dtype}\n - Device: {tensor.device}")
if tensor.numel() > 0:
try: print(f" - Stats: Min={tensor.min().item():.4f}, Max={tensor.max().item():.4f}, Mean={tensor.mean().item():.4f}")
except: pass
print("------------------------------------------\n")
# --- 3. CLASSE PRINCIPAL DO SERVIÇO DE VÍDEO ---
class VideoService:
def __init__(self):
t0 = time.perf_counter()
print("[INFO] Inicializando VideoService...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.config = self._load_config()
print(f"[INFO] Config: {self.config.get('precision')}, Sampler: {self.config.get('sampler')}, Device: {self.device}")
self._tmp_dirs, self._tmp_files = set(), set()
self.pipeline, self.latent_upsampler = self._load_models()
self.pipeline.to(self.device)
if self.latent_upsampler: self.latent_upsampler.to(self.device)
self._apply_precision_policy()
vae_manager_singleton.attach_pipeline(self.pipeline, device=self.device, autocast_dtype=self.runtime_autocast_dtype)
if self.device == "cuda": torch.cuda.empty_cache()
print(f"[SUCCESS] VideoService pronto. ({time.perf_counter()-t0:.2f}s)")
def _load_config(self):
# ... (Implementação completa, sem omissões)
base = LTX_VIDEO_REPO_DIR / "configs"
candidates = [
base / "ltxv-13b-0.9.8-dev-fp8.yaml",
base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
base / "ltxv-13b-0.9.8-distilled.yaml",
]
for cfg_path in candidates:
if cfg_path.exists():
with open(cfg_path, "r") as file: return yaml.safe_load(file)
raise FileNotFoundError(f"Nenhum arquivo de config YAML encontrado em {base}.")
def _load_models(self):
# ... (Implementação completa, sem omissões)
t0 = time.perf_counter()
repo_id = self.config.get("repo_id", "Lightricks/LTX-Video")
ckpt_path = hf_hub_download(repo_id=repo_id, filename=self.config["checkpoint_path"], token=os.getenv("HF_TOKEN"))
pipeline = create_ltx_video_pipeline(
ckpt_path=ckpt_path,
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu"
)
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
upscaler_path = hf_hub_download(repo_id=repo_id, filename=self.config["spatial_upscaler_model_path"], token=os.getenv("HF_TOKEN"))
latent_upsampler = create_latent_upsampler(upscaler_path, device="cpu")
print(f"[DEBUG] Modelos carregados em {time.perf_counter() - t0:.2f}s")
return pipeline, latent_upsampler
def _apply_precision_policy(self):
prec = str(self.config.get("precision", "")).lower()
self.runtime_autocast_dtype = torch.float32
if "bfloat16" in prec or "fp8" in prec: self.runtime_autocast_dtype = torch.bfloat16
elif "mixed_precision" in prec or "fp16" in prec: self.runtime_autocast_dtype = torch.float16
print(f"[DEBUG] Dtype para Autocast: {self.runtime_autocast_dtype}")
def finalize(self, keep_paths=None, clear_gpu=True):
# ... (Implementação robusta de limpeza)
print("[INFO] Finalize: iniciando limpeza de recursos...")
keep = set(keep_paths or [])
for f in list(self._tmp_files):
try:
if f not in keep and os.path.isfile(f): os.remove(f)
except Exception as e: print(f"[WARN] Falha ao remover tmp file {f}: {e}")
finally: self._tmp_files.discard(f)
for d in list(self._tmp_dirs):
try:
if d not in keep and os.path.isdir(d): shutil.rmtree(d, ignore_errors=True)
except Exception as e: print(f"[WARN] Falha ao remover tmp dir {d}: {e}")
finally: self._tmp_dirs.discard(d)
gc.collect()
if clear_gpu and self.device == "cuda":
try:
torch.cuda.empty_cache(); torch.cuda.ipc_collect()
except Exception as e: print(f"[ERROR] Falha na limpeza da GPU: {e}")
# --- LÓGICA DE GERAÇÃO E CHUNKING RESTAURADA ---
def _dividir_latentes_por_tamanho(self, latents_brutos, num_latente_por_chunk: int, overlap: int = 1):
total_latentes = latents_brutos.shape[2]
if num_latente_por_chunk >= total_latentes:
return [latents_brutos]
chunks = []
start = 0
while start < total_latentes:
end = min(start + num_latente_por_chunk, total_latentes)
# Adiciona overlap, exceto no último chunk
end_with_overlap = min(end + overlap, total_latentes) if end < total_latentes else end
chunk = latents_brutos[:, :, start:end_with_overlap, :, :].clone().detach()
chunks.append(chunk)
if LTXV_DEBUG: print(f"[DEBUG] Chunk criado: frames {start} a {end_with_overlap}")
start = end
return chunks
def _get_total_frames(self, video_path: str) -> int:
cmd = ["ffprobe", "-v", "error", "-select_streams", "v:0", "-count_frames", "-show_entries", "stream=nb_read_frames", "-of", "default=nokey=1:noprint_wrappers=1", str(video_path)]
try:
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
return int(result.stdout.strip())
except (subprocess.CalledProcessError, ValueError) as e:
print(f"[ERROR] FFprobe falhou para {video_path}: {e}")
return 0
def _gerar_lista_com_transicoes(self, pasta: str, video_paths: list[str], crossfade_frames: int = 8) -> list[str]:
if len(video_paths) <= 1: return video_paths
print("[DEBUG] Iniciando processo de concatenação com transições...")
arquivos_para_concatenar = []
temp_blend_files = []
# 1. Trata o primeiro vídeo (só corta o final)
primeiro_video = video_paths[0]
total_frames_primeiro = self._get_total_frames(primeiro_video)
path_primeiro_cortado = os.path.join(pasta, "0_head.mp4")
cmd_primeiro = f'ffmpeg -y -hide_banner -loglevel error -i "{primeiro_video}" -vf "trim=end_frame={total_frames_primeiro - crossfade_frames},setpts=PTS-STARTPTS" -an "{path_primeiro_cortado}"'
subprocess.run(cmd_primeiro, shell=True, check=True)
arquivos_para_concatenar.append(path_primeiro_cortado)
# 2. Itera pelos vídeos intermediários, criando blends
for i in range(len(video_paths) - 1):
video_A_path = video_paths[i]
video_B_path = video_paths[i+1]
total_frames_A = self._get_total_frames(video_A_path)
# Extrai cauda de A e cabeça de B
cauda_A = os.path.join(pasta, f"{i}_tail_A.mp4")
cabeca_B = os.path.join(pasta, f"{i+1}_head_B.mp4")
cmd_cauda_A = f'ffmpeg -y -hide_banner -loglevel error -i "{video_A_path}" -vf "trim=start_frame={total_frames_A - crossfade_frames},setpts=PTS-STARTPTS" -an "{cauda_A}"'
cmd_cabeca_B = f'ffmpeg -y -hide_banner -loglevel error -i "{video_B_path}" -vf "trim=end_frame={crossfade_frames},setpts=PTS-STARTPTS" -an "{cabeca_B}"'
subprocess.run(cmd_cauda_A, shell=True, check=True)
subprocess.run(cmd_cabeca_B, shell=True, check=True)
# Cria o blend
blend_path = os.path.join(pasta, f"blend_{i}_{i+1}.mp4")
cmd_blend = f'ffmpeg -y -hide_banner -loglevel error -i "{cauda_A}" -i "{cabeca_B}" -filter_complex "[0:v][1:v]blend=all_expr=\'A*(1-T/{crossfade_frames})+B*(T/{crossfade_frames})\',format=yuv420p" -an "{blend_path}"'
subprocess.run(cmd_blend, shell=True, check=True)
arquivos_para_concatenar.append(blend_path)
temp_blend_files.extend([cauda_A, cabeca_B])
# Pega o meio do vídeo B (se não for o último)
if i + 1 < len(video_paths) - 1:
meio_B = os.path.join(pasta, f"{i+1}_body.mp4")
total_frames_B = self._get_total_frames(video_B_path)
cmd_meio_B = f'ffmpeg -y -hide_banner -loglevel error -i "{video_B_path}" -vf "trim=start_frame={crossfade_frames}:end_frame={total_frames_B - crossfade_frames},setpts=PTS-STARTPTS" -an "{meio_B}"'
subprocess.run(cmd_meio_B, shell=True, check=True)
arquivos_para_concatenar.append(meio_B)
# 3. Trata o último vídeo (só corta o começo)
ultimo_video = video_paths[-1]
path_ultimo_cortado = os.path.join(pasta, f"{len(video_paths)-1}_tail.mp4")
cmd_ultimo = f'ffmpeg -y -hide_banner -loglevel error -i "{ultimo_video}" -vf "trim=start_frame={crossfade_frames},setpts=PTS-STARTPTS" -an "{path_ultimo_cortado}"'
subprocess.run(cmd_ultimo, shell=True, check=True)
arquivos_para_concatenar.append(path_ultimo_cortado)
# Limpa arquivos intermediários de blend
for f in temp_blend_files: os.remove(f)
return arquivos_para_concatenar
def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
if not mp4_list: raise ValueError("Lista de MP4s para concatenar está vazia.")
if len(mp4_list) == 1:
shutil.move(mp4_list[0], out_path)
return
with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt", dir=os.path.dirname(out_path)) as f:
for mp4 in mp4_list:
f.write(f"file '{os.path.abspath(mp4)}'\n")
list_path = f.name
cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
try:
subprocess.run(shlex.split(cmd), check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
print(f"[ERROR] Concatenação falhou: {e.stderr}")
raise
finally:
os.remove(list_path)
# --- FUNÇÃO GENERATE_LOW RESTAURADA ---
@torch.no_grad()
def generate_low(self, call_kwargs, guidance_scale, width, height):
first_pass_config = self.config.get("first_pass", {}).copy()
first_pass_config.pop("num_inference_steps", None) # Evita duplicidade
first_pass_kwargs = call_kwargs.copy()
first_pass_kwargs.update({
"output_type": "latent",
"width": width,
"height": height,
"guidance_scale": float(guidance_scale),
**first_pass_config
})
print(f"[DEBUG] First Pass: Gerando em {width}x{height}...")
latents = self.pipeline(**first_pass_kwargs).images
log_tensor_info(latents, "Latentes Base (First Pass)")
partes_mp4 = [latents]
if len(partes_mp4) > 1:
print("[INFO] Múltiplos chunks gerados. Concatenando com transições...")
final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
partes_para_concatenar = self._gerar_lista_com_transicoes(temp_dir, partes_mp4, crossfade_frames=8)
self._concat_mp4s_no_reencode(partes_para_concatenar, final_output_path)
elif partes_mp4:
print("[INFO] Apenas um chunk gerado. Movendo para o destino final.")
final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
shutil.move(partes_mp4[0], final_output_path)
else:
raise RuntimeError("Nenhum vídeo foi gerado.")
return final_output_path
# ==============================================================================
# --- FUNÇÃO DE GERAÇÃO PRINCIPAL (COMPLETA) ---
# ==============================================================================
def generate(self, prompt: str, **kwargs):
final_output_path, used_seed = None, None
try:
t_all = time.perf_counter()
print(f"\n{'='*20} INICIANDO NOVA GERAÇÃO {'='*20}")
if self.device == "cuda": torch.cuda.empty_cache()
# --- 1. Setup da Geração ---
negative_prompt = kwargs.get("negative_prompt", "")
mode = kwargs.get("mode", "text-to-video")
height = kwargs.get("height", 512)
width = kwargs.get("width", 704)
duration = kwargs.get("duration", 2.0)
guidance_scale = kwargs.get("guidance_scale", 3.0)
improve_texture = kwargs.get("improve_texture", True)
used_seed = random.randint(0, 2**32 - 1) if kwargs.get("randomize_seed", True) else int(kwargs.get("seed", 42))
seed_everething(used_seed)
print(f"[INFO] Geração com Seed: {used_seed}")
FPS = 24.0
actual_num_frames = max(9, int(round(duration * FPS) / 8) * 8 + 1)
height_padded = ((height - 1) // 8 + 1) * 8
width_padded = ((width - 1) // 8 + 1) * 8
padding_values = calculate_padding(height, width, height_padded, width_padded)
generator = torch.Generator(device=self.device).manual_seed(used_seed)
temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._tmp_dirs.add(temp_dir)
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
# --- 2. Condicionamento ---
conditioning_items = []
# (Adicionar lógica de condicionamento de imagem aqui se necessário)
# --- 3. Argumentos da Pipeline ---
call_kwargs = { "prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded, "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "latent", "conditioning_items": conditioning_items or None }
# --- 4. Geração dos Latentes (com lógica de 2 passes restaurada) ---
latents_list = []
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype)
with ctx:
if improve_texture:
# ETAPA 1: Geração Base com generate_low
downscale_factor = self.config.get("downscale_factor", 0.66666)
low_res_area = (width * height) * (downscale_factor**2)
downscaled_h, downscaled_w = calculate_new_dimensions(width, height, target_area=low_res_area)
base_latents = self.generate_low(call_kwargs, guidance_scale, downscaled_w, downscaled_h)
# ETAPA 2: Upsample
upsampled_latents = self._upsample_latents_internal(base_latents)
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=base_latents)
del base_latents; gc.collect(); torch.cuda.empty_cache()
# ETAPA 3: Refinamento (Second Pass)
second_pass_config = self.config.get("second_pass", {}).copy()
second_pass_kwargs = call_kwargs.copy()
second_pass_kwargs.update({
"latents": upsampled_latents, "guidance_scale": guidance_scale, **second_pass_config
})
final_latents = self.pipeline(**second_pass_kwargs).images
latents_list.append(final_latents.detach().cpu())
del final_latents, upsampled_latents; gc.collect(); torch.cuda.empty_cache()
else:
# Geração de Passe Único
single_pass_latents = self.pipeline(**call_kwargs).images
latents_list.append(single_pass_latents.detach().cpu())
del single_pass_latents; gc.collect(); torch.cuda.empty_cache()
# --- 5. Decodificação em Chunks e Concatenação ---
partes_mp4 = []
chunk_count = 0
for i, latents_cpu in enumerate(latents_list):
# Dividir os latentes em partes menores para decodificar
latents_parts = self._dividir_latentes_por_tamanho(latents_cpu, 16, 8)
for chunk in latents_parts:
chunk_count += 1
print(f"[INFO] Decodificando chunk {chunk_count}/{len(latents_parts) * len(latents_list)}...")
pixel_tensor = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=self.config.get("decode_timestep", 0.05))
chunk_video_path = os.path.join(temp_dir, f"part_{chunk_count}.mp4")
video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, chunk_video_path, fps=FPS)
partes_mp4.append(chunk_video_path)
del pixel_tensor, chunk; gc.collect(); torch.cuda.empty_cache()
# --- 6. Montagem Final do Vídeo ---
if len(partes_mp4) > 1:
print("[INFO] Múltiplos chunks gerados. Concatenando com transições...")
final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
partes_para_concatenar = self._gerar_lista_com_transicoes(temp_dir, partes_mp4, crossfade_frames=8)
self._concat_mp4s_no_reencode(partes_para_concatenar, final_output_path)
elif partes_mp4:
print("[INFO] Apenas um chunk gerado. Movendo para o destino final.")
final_output_path = os.path.join(results_dir, f"final_{used_seed}.mp4")
shutil.move(partes_mp4[0], final_output_path)
else:
raise RuntimeError("Nenhum vídeo foi gerado.")
print(f"[SUCCESS] Geração concluída em {time.perf_counter() - t_all:.2f}s. Vídeo: {final_output_path}")
return final_output_path, used_seed
except Exception as e:
print(f"[FATAL ERROR] A geração falhou: {type(e).__name__} - {e}")
traceback.print_exc()
raise
finally:
self.finalize(keep_paths=[final_output_path] if final_output_path else [])
# --- Ponto de Entrada ---
if __name__ == "__main__":
print("Iniciando carregamento do VideoService...")
video_generation_service = VideoService()
print("\n[INFO] VideoService pronto para receber tarefas.") |