Spaces:
Running
Running
File size: 33,379 Bytes
e522499 cdf0803 1feabbb cdf0803 1feabbb cdf0803 15c01f8 1feabbb cdf0803 1feabbb 707779e 1feabbb 40e0f9a 1feabbb 79f26df 1feabbb a1a37cc 1feabbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
import streamlit as st
import pandas as pd
import numpy as np
import requests
import time
from collections import defaultdict
import datetime
import altair as alt
# Set page layout to wide mode and set page title
st.set_page_config(layout="wide", page_title="影城效率与内容分析工具")
# --- Helper Functions ---
def clean_movie_title(title):
if not isinstance(title, str):
return title
return title.split(' ', 1)[0]
def style_efficiency(row):
green = 'background-color: #E6F5E6;' # Light Green
red = 'background-color: #FFE5E5;' # Light Red
default = ''
styles = [default] * len(row)
seat_efficiency = row.get('座次效率', 0)
session_efficiency = row.get('场次效率', 0)
if seat_efficiency > 1.5 or session_efficiency > 1.5:
styles = [green] * len(row)
elif seat_efficiency < 0.5 or session_efficiency < 0.5:
styles = [red] * len(row)
return styles
def process_and_analyze_data(df):
if df.empty:
return pd.DataFrame()
analysis_df = df.groupby('影片名称_清理后').agg(
座位数=('座位数', 'sum'),
场次=('影片名称_清理后', 'size'),
票房=('总收入', 'sum'),
人次=('总人次', 'sum')
).reset_index()
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
total_seats = analysis_df['座位数'].sum()
total_sessions = analysis_df['场次'].sum()
total_revenue = analysis_df['票房'].sum()
analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0)
analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0)
analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0)
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
final_columns = ['影片', '座位数', '场次', '票房', '人次', '均价', '座次比', '场次比', '票房比', '座次效率',
'场次效率']
analysis_df = analysis_df[final_columns]
return analysis_df
def get_circled_number(hall_name):
mapping = {'1': '①', '2': '②', '3': '③', '4': '④', '5': '⑤', '6': '⑥', '7': '⑦', '8': '⑧', '9': '⑨'}
num_str = ''.join(filter(str.isdigit, hall_name))
return mapping.get(num_str, '')
def format_play_time(time_str):
if not time_str or not isinstance(time_str, str): return None
try:
parts = time_str.split(':');
hours = int(parts[0]);
minutes = int(parts[1])
return hours * 60 + minutes
except (ValueError, IndexError):
return None
def add_tms_locations_to_analysis(analysis_df, tms_movie_list):
locations = []
for index, row in analysis_df.iterrows():
movie_title = row['影片']
found_versions = []
for tms_movie in tms_movie_list:
if tms_movie['assert_name'].startswith(movie_title):
version_name = tms_movie['assert_name'].replace(movie_title, '').strip()
circled_halls = " ".join(sorted([get_circled_number(h) for h in tms_movie['halls']]))
if version_name:
found_versions.append(f"{version_name}:{circled_halls}")
else:
found_versions.append(circled_halls)
locations.append('|'.join(found_versions))
analysis_df['影片所在影厅位置'] = locations
return analysis_df
def get_chinese_holidays_2025():
holidays = set()
holidays.add(datetime.date(2025, 1, 1))
holidays.update([datetime.date(2025, 1, 28), datetime.date(2025, 1, 29), datetime.date(2025, 1, 30),
datetime.date(2025, 1, 31), datetime.date(2025, 2, 1), datetime.date(2025, 2, 2),
datetime.date(2025, 2, 3)])
holidays.update([datetime.date(2025, 4, 4), datetime.date(2025, 4, 5), datetime.date(2025, 4, 6)])
holidays.update([datetime.date(2025, 5, 1), datetime.date(2025, 5, 2), datetime.date(2025, 5, 3),
datetime.date(2025, 5, 4), datetime.date(2025, 5, 5)])
holidays.update([datetime.date(2025, 5, 30), datetime.date(2025, 5, 31), datetime.date(2025, 6, 1)])
holidays.add(datetime.date(2025, 10, 6))
holidays.update([datetime.date(2025, 10, 1), datetime.date(2025, 10, 2), datetime.date(2025, 10, 3),
datetime.date(2025, 10, 4), datetime.date(2025, 10, 5), datetime.date(2025, 10, 6),
datetime.date(2025, 10, 7)])
return holidays
def plot_daily_box_office(df, selected_movie='全部影片'):
if selected_movie != '全部影片':
plot_df = df[df['影片名称_清理后'] == selected_movie].copy()
else:
plot_df = df.copy()
if plot_df.empty:
st.warning(f"影片《{selected_movie}》在所分析的文件中没有找到数据。")
return None
daily_revenue = plot_df.groupby('放映日期')['总收入'].sum().reset_index()
daily_revenue.rename(columns={'放映日期': '日期', '总收入': '票房'}, inplace=True)
total_box_office = daily_revenue['票房'].sum()
chart_title = f'每日票房表现 - {selected_movie} | 总票房: {total_box_office:,.0f} 元'
start_date = pd.to_datetime(df['放映日期'].min())
end_date = pd.to_datetime(df['放映日期'].max())
full_date_range = pd.to_datetime(pd.date_range(start=start_date, end=end_date, freq='D'))
daily_revenue['日期'] = pd.to_datetime(daily_revenue['日期'])
daily_revenue = pd.merge(pd.DataFrame({'日期': full_date_range}), daily_revenue, on='日期', how='left').fillna(0)
holidays = get_chinese_holidays_2025()
daily_revenue['day_of_week'] = daily_revenue['日期'].dt.dayofweek
daily_revenue['类型'] = daily_revenue.apply(
lambda row: '节假日' if row['日期'].date() in holidays else (
'周末' if row['day_of_week'] in [4, 5, 6] else '工作日'),
axis=1
)
chart = alt.Chart(daily_revenue).mark_bar().encode(
x=alt.X('日期:T', title='日期', axis=alt.Axis(labelAngle=-45, format='%m-%d')),
y=alt.Y('票房:Q', title='票房 (元)', scale=alt.Scale(domainMin=0)),
color=alt.Color('类型:N',
scale=alt.Scale(domain=['工作日', '周末', '节假日'], range=['#87CEEB', '#FFA500', '#FF4500']),
legend=alt.Legend(title="日期类型")),
tooltip=[alt.Tooltip('日期:T', format='%Y-%m-%d', title='日期'),
alt.Tooltip('票房:Q', format=',.2f', title='票房'),
alt.Tooltip('类型:N', title='类型')]
).properties(
title=chart_title
).interactive()
return chart
def round_time_to_5min(t_datetime):
if not isinstance(t_datetime, datetime.datetime):
if isinstance(t_datetime, datetime.time):
t_datetime = datetime.datetime.combine(datetime.date.today(), t_datetime)
else:
return None
minute = (t_datetime.minute // 5) * 5
rounded_datetime = t_datetime.replace(minute=minute, second=0, microsecond=0)
return rounded_datetime.time()
# --- REQUIREMENT 1: New function to plot daily box office by time period ---
def plot_daily_box_office_by_time(df, selected_movie='全部影片'):
if selected_movie != '全部影片':
plot_df = df[df['影片名称_清理后'] == selected_movie].copy()
else:
plot_df = df.copy()
if plot_df.empty:
return
plot_df['时间点'] = plot_df['放映时间'].apply(round_time_to_5min)
time_revenue = plot_df.groupby('时间点')['总收入'].sum().reset_index()
time_revenue.rename(columns={'总收入': '票房'}, inplace=True)
time_revenue['时间点'] = time_revenue['时间点'].apply(lambda t: t.strftime('%H:%M'))
chart_title = f'影城每日时间段票房表现 - {selected_movie}'
chart = alt.Chart(time_revenue).mark_bar().encode(
x=alt.X('时间点:N', title='时间点', sort=None, axis=alt.Axis(labelAngle=-45)),
y=alt.Y('票房:Q', title='票房 (元)'),
tooltip=[
alt.Tooltip('时间点:N', title='时间点'),
alt.Tooltip('票房:Q', format=',.2f', title='票房')
]
).properties(
title=chart_title
).interactive()
st.altair_chart(chart, use_container_width=True)
# --- Original time efficiency function (for the first tab) ---
def plot_time_efficiency_analysis(df):
df_filtered = df[(df['放映时间'] >= datetime.time(9, 30)) & (df['放映时间'] <= datetime.time(23, 59))].copy()
if df_filtered.empty:
st.warning("在 9:30 - 23:59 时间段内没有找到场次数据。")
return
df_filtered['时间点'] = df_filtered['放映时间'].apply(round_time_to_5min)
total_revenue_full_day = df['总收入'].sum()
total_seats_full_day = df['座位数'].sum()
total_sessions_full_day = len(df)
if total_revenue_full_day == 0 or total_seats_full_day == 0 or total_sessions_full_day == 0:
st.warning("总收入、总座位数或总场次数为零,无法计算效率。")
return
time_analysis = df_filtered.groupby(['放映日期', '时间点']).agg(
票房=('总收入', 'sum'),
座位数=('座位数', 'sum'),
场次=('场次', 'size'),
).reset_index()
time_analysis['票房比'] = time_analysis['票房'] / total_revenue_full_day
time_analysis['座次比'] = time_analysis['座位数'] / total_seats_full_day
time_analysis['场次比'] = time_analysis['场次'] / total_sessions_full_day
time_analysis['座次效率'] = (time_analysis['票房比'] / time_analysis['座次比']).fillna(0)
time_analysis['场次效率'] = (time_analysis['票房比'] / time_analysis['场次比']).fillna(0)
avg_time_efficiency = time_analysis.groupby('时间点')[['座次效率', '场次效率']].mean().reset_index()
avg_time_efficiency['时间点'] = avg_time_efficiency['时间点'].apply(lambda t: t.strftime('%H:%M'))
source = avg_time_efficiency.melt(id_vars=['时间点'], value_vars=['座次效率', '场次效率'], var_name='效率类型',
value_name='效率值')
chart = alt.Chart(source).mark_bar().encode(
x=alt.X('时间点:N', title='时间点', sort=None, axis=alt.Axis(labelAngle=-45)),
y=alt.Y('效率值:Q', title='平均效率'),
color=alt.Color('效率类型:N', title='效率类型'),
xOffset='效率类型:N',
tooltip=[alt.Tooltip('时间点:N'), alt.Tooltip('效率类型:N'), alt.Tooltip('效率值:Q', format='.2f')]
).properties(title='每日时间点平均效率分析 (对比全天)').interactive()
st.altair_chart(chart, use_container_width=True)
# --- Original movie time efficiency function (for the second tab) ---
def plot_movie_time_efficiency_analysis(df, selected_movie):
if selected_movie == '全部影片':
st.info("请选择一部具体的影片进行分析。")
return
df_movie = df[df['影片名称_清理后'] == selected_movie].copy()
df_movie = df_movie[
(df_movie['放映时间'] >= datetime.time(9, 30)) & (df_movie['放映时间'] <= datetime.time(23, 59))]
if df_movie.empty:
st.warning(f"在 9:30 - 23:59 时间段内没有找到影片《{selected_movie}》的场次数据。")
return
df_movie['时间点'] = df_movie['放映时间'].apply(round_time_to_5min)
daily_totals = df.groupby('放映日期').agg(总票房=('总收入', 'sum'), 总座位数=('座位数', 'sum'),
总场次数=('场次', 'sum')).reset_index()
if daily_totals.empty:
st.warning("无法计算每日总计数据,分析中止。")
return
df_movie = pd.merge(df_movie, daily_totals, on='放映日期')
df_movie = df_movie[(df_movie['总票房'] > 0) & (df_movie['总座位数'] > 0) & (df_movie['总场次数'] > 0)]
df_movie['票房比'] = df_movie['总收入'] / df_movie['总票房']
df_movie['座次比'] = df_movie['座位数'] / df_movie['总座位数']
df_movie['场次比'] = 1 / df_movie['总场次数']
df_movie['座次效率'] = (df_movie['票房比'] / df_movie['座次比']).fillna(0)
df_movie['场次效率'] = (df_movie['票房比'] / df_movie['场次比']).fillna(0)
avg_movie_time_efficiency = df_movie.groupby('时间点')[['座次效率', '场次效率']].mean().reset_index()
avg_movie_time_efficiency['时间点'] = avg_movie_time_efficiency['时间点'].apply(lambda t: t.strftime('%H:%M'))
source = avg_movie_time_efficiency.melt(id_vars=['时间点'], value_vars=['座次效率', '场次效率'],
var_name='效率类型', value_name='效率值')
chart = alt.Chart(source).mark_bar().encode(
x=alt.X('时间点:N', title='时间点', sort=None, axis=alt.Axis(labelAngle=-45)),
y=alt.Y('效率值:Q', title='平均效率'),
color='效率类型:N',
xOffset='效率类型:N',
tooltip=[alt.Tooltip('时间点:N'), alt.Tooltip('效率类型:N'), alt.Tooltip('效率值:Q', format='.2f')]
).properties(title=f'影片《{selected_movie}》各时间点平均效率分析 (对比全天)').interactive()
st.altair_chart(chart, use_container_width=True)
# --- REQUIREMENT 2: New function for windowed daily efficiency analysis ---
def plot_windowed_daily_efficiency(df, window_minutes):
df['时间点'] = df['放映时间'].apply(round_time_to_5min)
time_slots = sorted(df['时间点'].unique())
all_days = df['放映日期'].unique()
results = []
for center_time in time_slots:
center_dt = datetime.datetime.combine(datetime.date.today(), center_time)
start_dt = center_dt - datetime.timedelta(minutes=window_minutes)
end_dt = center_dt + datetime.timedelta(minutes=window_minutes)
daily_efficiencies = []
for day in all_days:
day_df = df[df['放映日期'] == day]
# Numerator: Center point's performance
center_df = day_df[day_df['时间点'] == center_time]
center_revenue = center_df['总收入'].sum()
center_seats = center_df['座位数'].sum()
center_sessions = len(center_df)
# Denominator: Window's performance
window_df = day_df[day_df['放映时间'].between(start_dt.time(), end_dt.time())]
window_revenue = window_df['总收入'].sum()
window_seats = window_df['座位数'].sum()
window_sessions = len(window_df)
if window_revenue > 0 and window_seats > 0 and window_sessions > 0:
票房比 = center_revenue / window_revenue
座次比 = center_seats / window_seats
场次比 = center_sessions / window_sessions
seat_efficiency = (票房比 / 座次比) if 座次比 > 0 else 0
session_efficiency = (票房比 / 场次比) if 场次比 > 0 else 0
daily_efficiencies.append({'seat': seat_efficiency, 'session': session_efficiency})
if daily_efficiencies:
avg_seat_eff = np.mean([d['seat'] for d in daily_efficiencies])
avg_session_eff = np.mean([d['session'] for d in daily_efficiencies])
results.append(
{'时间点': center_time.strftime('%H:%M'), '座次效率': avg_seat_eff, '场次效率': avg_session_eff})
if not results:
st.warning("没有足够的数据来计算分时间段的每日效率。")
return
results_df = pd.DataFrame(results)
source = results_df.melt(id_vars=['时间点'], value_vars=['座次效率', '场次效率'], var_name='效率类型',
value_name='效率值')
chart = alt.Chart(source).mark_bar().encode(
x=alt.X('时间点:N', sort=None, axis=alt.Axis(labelAngle=-45)),
y=alt.Y('效率值:Q', title=f'平均效率 (对比±{window_minutes}分钟窗口)'),
color='效率类型:N',
xOffset='效率类型:N',
tooltip=[alt.Tooltip('时间点:N'), alt.Tooltip('效率类型:N'), alt.Tooltip('效率值:Q', format='.2f')]
).properties(title=f'每日时间效率分析 (移动窗口: {window_minutes * 2}分钟)').interactive()
st.altair_chart(chart, use_container_width=True)
# --- REQUIREMENT 3: New function for windowed movie efficiency analysis ---
def plot_windowed_movie_efficiency(df, center_time, window_minutes):
df['时间点'] = df['放映时间'].apply(round_time_to_5min)
center_dt = datetime.datetime.combine(datetime.date.today(), center_time)
start_dt = center_dt - datetime.timedelta(minutes=window_minutes)
end_dt = center_dt + datetime.timedelta(minutes=window_minutes)
all_days = df['放映日期'].unique()
movie_list = df['影片名称_清理后'].unique()
results = []
for movie in movie_list:
daily_efficiencies = []
for day in all_days:
day_df = df[df['放映日期'] == day]
# Denominator: Window's performance on a specific day
window_df = day_df[day_df['放映时间'].between(start_dt.time(), end_dt.time())]
window_revenue = window_df['总收入'].sum()
window_seats = window_df['座位数'].sum()
window_sessions = len(window_df)
if window_revenue > 0 and window_seats > 0 and window_sessions > 0:
# Numerator: Movie's performance at the center point on that day
movie_center_df = day_df[(day_df['时间点'] == center_time) & (day_df['影片名称_清理后'] == movie)]
movie_center_revenue = movie_center_df['总收入'].sum()
movie_center_seats = movie_center_df['座位数'].sum()
movie_center_sessions = len(movie_center_df)
if movie_center_revenue > 0: # Only calculate if the movie had a show
票房比 = movie_center_revenue / window_revenue
座次比 = movie_center_seats / window_seats
场次比 = movie_center_sessions / window_sessions
seat_efficiency = (票房比 / 座次比) if 座次比 > 0 else 0
session_efficiency = (票房比 / 场次比) if 场次比 > 0 else 0
daily_efficiencies.append({'seat': seat_efficiency, 'session': session_efficiency})
if daily_efficiencies:
avg_seat_eff = np.mean([d['seat'] for d in daily_efficiencies])
avg_session_eff = np.mean([d['session'] for d in daily_efficiencies])
results.append({'影片': movie, '座次效率': avg_seat_eff, '场次效率': avg_session_eff})
if not results:
st.warning(
f"在 {start_dt.time().strftime('%H:%M')} - {end_dt.time().strftime('%H:%M')} 时间段内没有足够的数据进行单片效率分析。")
return
results_df = pd.DataFrame(results).sort_values(by='座次效率', ascending=False)
source = results_df.melt(id_vars=['影片'], value_vars=['座次效率', '场次效率'], var_name='效率类型',
value_name='效率值')
chart = alt.Chart(source).mark_bar().encode(
x=alt.X('效率值:Q'),
y=alt.Y('影片:N', sort='-x'),
color='效率类型:N',
tooltip=[alt.Tooltip('影片:N'), alt.Tooltip('效率类型:N'), alt.Tooltip('效率值:Q', format='.2f')]
).properties(
title=f"时间段 {start_dt.time().strftime('%H:%M')}-{end_dt.time().strftime('%H:%M')} 内单片平均效率").interactive()
st.altair_chart(chart, use_container_width=True)
# --- TMS Server Movie Content Inquiry ---
@st.cache_data(show_spinner=False)
def fetch_and_process_server_movies(priority_movie_titles=None):
if priority_movie_titles is None:
priority_movie_titles = []
# (The rest of the TMS function remains unchanged)
# 1. Get Token
try:
token_headers = {
'Host': 'oa.hengdianfilm.com:7080', 'Content-Type': 'application/json',
'Origin': 'http://115.239.253.233:7080', 'Connection': 'keep-alive',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 18_5_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) CriOS/138.0.7204.156 Mobile/15E148 Safari/604.1',
'Accept-Language': 'zh-CN,zh-Hans;q=0.9',
}
token_json_data = {'appId': 'hd', 'appSecret': 'ad761f8578cc6170', 'timeStamp': int(time.time() * 1000)}
token_url = 'http://oa.hengdianfilm.com:7080/cinema-api/admin/generateToken?token=hd&murl=?token=hd&murl=ticket=-1495916529737643774'
response = requests.post(token_url, headers=token_headers, json=token_json_data, timeout=10)
response.raise_for_status()
token_data = response.json()
if token_data.get('error_code') != '0000':
st.error(f"获取Token失败: {token_data.get('error_desc', '未知错误')}")
return {}, []
auth_token = token_data['param']
except requests.exceptions.RequestException as e:
st.error(f"网络请求错误: {e}")
return {}, []
except Exception as e:
st.error(f"获取Token时发生未知错误: {e}")
return {}, []
# 2. Fetch movie list (with pagination and delay)
all_movies = []
page_index = 1
while True:
try:
list_headers = {
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Content-Type': 'application/json; charset=UTF-8',
'Origin': 'http://115.239.253.233:7080', 'Proxy-Connection': 'keep-alive', 'Token': auth_token,
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
'X-SESSIONID': 'PQ0J3K85GJEDVYIGZE1KEG1K80USDAP4',
}
list_params = {'token': 'hd', 'murl': 'ContentMovie'}
list_json_data = {'THEATER_ID': 38205954, 'SOURCE': 'SERVER', 'ASSERT_TYPE': 2, 'PAGE_CAPACITY': 20,
'PAGE_INDEX': page_index}
list_url = 'http://oa.hengdianfilm.com:7080/cinema-api/cinema/server/dcp/list'
response = requests.post(list_url, params=list_params, headers=list_headers, json=list_json_data,
verify=False)
response.raise_for_status()
movie_data = response.json()
if movie_data.get("RSPCD") != "000000":
st.error(f"获取影片列表失败: {movie_data.get('RSPMSG', '未知错误')}")
return {}, []
body = movie_data.get("BODY", {})
movies_on_page = body.get("LIST", [])
if not movies_on_page: break
all_movies.extend(movies_on_page)
if len(all_movies) >= body.get("COUNT", 0): break
page_index += 1
time.sleep(1)
except requests.exceptions.RequestException as e:
st.error(f"网络请求错误: {e}")
return {}, []
except Exception as e:
st.error(f"获取影片列表时发生未知错误: {e}")
return {}, []
# 3. Process data
movie_details = {m['CONTENT_NAME']: {'assert_name': m.get('ASSERT_NAME'),
'halls': sorted([h.get('HALL_NAME') for h in m.get('HALL_INFO', [])]),
'play_time': m.get('PLAY_TIME')} for m in all_movies if m.get('CONTENT_NAME')}
by_hall = defaultdict(list)
for name, details in movie_details.items():
for hall in details['halls']: by_hall[hall].append({'content_name': name, 'details': details})
for hall in by_hall: by_hall[hall].sort(
key=lambda item: (item['details']['assert_name'] is None or item['details']['assert_name'] == '',
item['details']['assert_name'] or item['content_name']))
view2_list = [
{'assert_name': d['assert_name'], 'content_name': name, 'halls': d['halls'], 'play_time': d['play_time']} for
name, d in movie_details.items() if d.get('assert_name')]
priority_list = [item for item in view2_list if any(p in item['assert_name'] for p in priority_movie_titles)]
other_list = [item for item in view2_list if item not in priority_list]
priority_list.sort(key=lambda x: x['assert_name']);
other_list.sort(key=lambda x: x['assert_name'])
return dict(sorted(by_hall.items())), priority_list + other_list
# --- Streamlit Main UI ---
st.title('影城排片效率与内容分析工具')
st.write("上传 `影片映出日累计报表.xlsx` 进行效率分析,或点击下方按钮查询 TMS 服务器影片内容。")
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
query_tms_for_location = st.checkbox("查询 TMS 找影片所在影厅")
if uploaded_file is not None:
try:
df = pd.read_excel(uploaded_file, skiprows=3, header=None)
df['场次'] = 1
df.rename(columns={0: '影片名称', 1: '放映日期', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'},
inplace=True)
required_cols = ['影片名称', '放映日期', '放映时间', '座位数', '总收入', '总人次', '场次']
df = df[required_cols]
df.dropna(subset=['影片名称', '放映日期', '放映时间'], inplace=True)
df['放映日期'] = pd.to_datetime(df['放映日期'], errors='coerce').dt.date
df.dropna(subset=['放映日期'], inplace=True)
for col in ['座位数', '总收入', '总人次']:
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
df.dropna(subset=['放映时间'], inplace=True)
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
st.toast("文件上传成功,效率分析已生成!", icon="🎉")
format_config = {'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}', '票房': '{:,.2f}', '均价': '{:.2f}',
'座次比': '{:.2%}', '场次比': '{:.2%}', '票房比': '{:.2%}', '座次效率': '{:.2f}',
'场次效率': '{:.2f}'}
full_day_analysis = process_and_analyze_data(df.copy())
prime_time_analysis = process_and_analyze_data(
df[df['放映时间'].between(datetime.time(14, 0), datetime.time(21, 0))].copy())
if query_tms_for_location:
# ... (TMS logic remains unchanged)
pass
st.markdown("### 全天排片效率分析")
if not full_day_analysis.empty:
st.dataframe(full_day_analysis.style.format(format_config), use_container_width=True, hide_index=True)
st.markdown("#### 黄金时段排片效率分析 (14:00-21:00)")
if not prime_time_analysis.empty:
st.dataframe(prime_time_analysis.style.format(format_config), use_container_width=True, hide_index=True)
if not full_day_analysis.empty:
st.markdown("##### 复制当日排片列表")
movie_titles = full_day_analysis['影片'].tolist()
formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
st.code(formatted_titles, language='text')
if not df.empty:
with st.expander("影城每日票房表现", expanded=True):
movie_options = ['全部影片'] + full_day_analysis['影片'].unique().tolist()
selected_movie_for_chart = st.selectbox('选择影片查看其每日票房', options=movie_options,
key='daily_box_office_selector')
daily_chart = plot_daily_box_office(df.copy(), selected_movie_for_chart)
if daily_chart:
st.altair_chart(daily_chart, use_container_width=True)
# --- UI CHANGE FOR REQUIREMENT 1 ---
st.markdown("---")
plot_daily_box_office_by_time(df.copy(), selected_movie_for_chart)
# --- UI CHANGE FOR REQUIREMENTS 2 & 3 ---
with st.expander("每日时间效率分析", expanded=False):
tab1, tab2, tab3, tab4 = st.tabs([
"每日效率(对比全天)",
"单片效率(对比全天)",
"每日效率(分时间段)",
"单片效率(分时间段)"
])
with tab1:
st.write("分析所有影片在各时间点(5分钟聚合)的平均效率。效率值通过对比 **全天** 的总表现得出。")
plot_time_efficiency_analysis(df.copy())
with tab2:
st.write("选择一部影片,查看其在各时间点的平均效率。效率值通过对比 **全天** 的总表现得出。")
movie_options_for_time = ['全部影片'] + full_day_analysis['影片'].unique().tolist()
selected_movie_for_time_chart = st.selectbox('选择影片', options=movie_options_for_time,
key='movie_time_selector')
plot_movie_time_efficiency_analysis(df.copy(), selected_movie_for_time_chart)
with tab3:
st.write("分析每个时间点的效率,效率值通过对比该时间点 **周边指定时间窗口** 的总表现得出。")
window_daily = st.number_input("时间窗口(前后各x分钟)", min_value=5, value=20, step=5,
key='daily_window')
plot_windowed_daily_efficiency(df.copy(), window_daily)
with tab4:
st.write(
"在指定时间窗口内,分析各影片的效率。效率值通过对比影片在 **中心时间点** 的表现与 **整个窗口** 的总表现得出。")
col1, col2 = st.columns(2)
with col1:
center_time_movie = st.time_input("中心时间点", value=datetime.time(19, 30),
step=datetime.timedelta(minutes=5), key='movie_time_center')
with col2:
window_movie = st.number_input("时间窗口(前后各x分钟)", min_value=5, value=20, step=5,
key='movie_window')
plot_windowed_movie_efficiency(df.copy(), center_time_movie, window_movie)
except Exception as e:
st.error(f"处理文件时出错: {e}")
st.error("请检查您的 Excel 文件格式是否正确,特别是日期和时间列。")
# (TMS UI part remains unchanged)
st.divider()
st.markdown("### TMS 服务器影片内容查询")
if st.button('点击查询 TMS 服务器'):
with st.spinner("正在从 TMS 服务器获取数据中..."):
try:
halls_data, movie_list_sorted = fetch_and_process_server_movies()
st.toast("TMS 服务器数据获取成功!", icon="🎉")
if halls_data or movie_list_sorted:
st.markdown("#### 按影片查看所在影厅")
view2_data = [{'影片名称': item['assert_name'],
'所在影厅': " ".join(sorted([get_circled_number(h) for h in item['halls']])),
'文件名': item['content_name'], '时长': format_play_time(item['play_time'])} for item in
movie_list_sorted]
df_view2 = pd.DataFrame(view2_data)
st.dataframe(df_view2, hide_index=True, use_container_width=True)
st.markdown("#### 按影厅查看影片内容")
hall_tabs = st.tabs(list(halls_data.keys()))
for tab, hall_name in zip(hall_tabs, halls_data.keys()):
with tab:
view1_data_for_tab = [{'影片名称': item['details']['assert_name'],
'所在影厅': " ".join(
sorted([get_circled_number(h) for h in item['details']['halls']])),
'文件名': item['content_name'],
'时长': format_play_time(item['details']['play_time'])} for item in
halls_data[hall_name]]
df_view1_tab = pd.DataFrame(view1_data_for_tab)
st.dataframe(df_view1_tab, hide_index=True, use_container_width=True)
except Exception as e:
st.error(f"查询服务器时出错: {e}") |